Nonstandard hulls of locally uniform groups

Isaac Goldbring

UCLA

Special Session on Nonstandard Analysis AMS Spring Sectional Meeting University of Hawaii at Manoa March 3, 2012

Nonstandard hulls of uniform spaces á la Luxembourg

- Suppose that (X, U) is a uniform space and $e \in X$.
- Let *P* be a family of pseudometrics generating the uniformity.
- Set $X_{\text{fin},P} := \{x \in X^* \mid p(x,e) \in \mathbb{R}_{\text{fin}} \text{ for all } p \in P\}.$

Set
$$\mu(\mathcal{U}) := \bigcap_{U \in \mathcal{U}} U^*$$
.

Set
$$\hat{X}_P := X_{\text{fin},P}/\mu(\mathcal{U}).$$

Then X̂_P is a uniform space with uniformity generated by the set of pseudometrics {p̂ | p ∈ P}, where p̂([x], [y]) := st(p(x, y)). We refer to X̂_P as a *nonstandard hull* of X.

Remark

This procedure depends on the choice of *P*. For example, given *P*, define $P' := {\min(p, 1) \mid p \in P}$. Then $X_{\text{fin},P'} = X^*$.

Let (G, τ) be a topological group. Then (G, U) is a uniform space, where U is either the *left uniformity* U_l or the *right uniformity* U_r :

- 1 \mathcal{U}_l has base $\{(x, y) \mid x^{-1}y \in U\}$, with $U \in \tau$.
- 2 \mathcal{U}_r has base $\{(x, y) \mid xy^{-1} \in U\}$, with $U \in \tau$.

Question

Is the nonstandard hull of (G, U), in a natural way, a topological group again?

Answer

For certain groups, the answer is almost yes.

Locally uniform groups

$$U^n := \{x_1 \cdots x_n \mid \text{ each } x_i \in U\}.$$

Definition (Enflo)

G is *locally uniform* if there is a symmetric open neighborhood *U* of the identity in *G* and a uniformity \mathcal{U} compatible with the topology such that $(x, y) \mapsto xy : U^2 \times U^2 \to U^4$ is \mathcal{U} -uniformly continuous.

Lemma (Enflo)

Suppose that G is locally uniform as witnessed by U and U. Then $\mathcal{U}|U = \mathcal{U}_I|U = \mathcal{U}_r|U$ and $x \mapsto x^{-1} : U \to U$ is \mathcal{U} -uniformly continuous.

We will refer to G as being U-locally uniform. If U = G, then we call G a *uniform group*.

< 日 > < 同 > < 回 > < 回 > < 回 > <

$$U^n := \{x_1 \cdots x_n \mid \text{ each } x_i \in U\}.$$

Definition (Enflo)

G is *locally uniform* if there is a symmetric open neighborhood *U* of the identity in *G* and a uniformity \mathcal{U} compatible with the topology such that $(x, y) \mapsto xy : U^2 \times U^2 \to U^4$ is \mathcal{U} -uniformly continuous.

Lemma (Enflo)

Suppose that G is locally uniform as witnessed by U and U. Then $\mathcal{U}|U = \mathcal{U}_l|U = \mathcal{U}_r|U$ and $x \mapsto x^{-1} : U \to U$ is \mathcal{U} -uniformly continuous.

We will refer to *G* as being *U*-locally uniform. If U = G, then we call *G* a *uniform group*.

Examples of locally uniform groups

Examples

- Locally compact groups
- 2 Locally abelian groups
- Groups that admit locally two-sided invariant metrics
- 4 Certain infinite-dimensional Lie groups

< ロ > < 同 > < 回 > < 回 >

Equivalent formulations

Let P (resp. Q) be the set of left-invariant (resp. right-invariant) continuous pseudometrics on G.

Lemma

The following are equivalent:

1 *G* is *U*-locally uniform;

$$2 \mathcal{U}_l | U = \mathcal{U}_r | U;$$

- $\exists \ \mu(\mathcal{U}_l) \cap (U^* \times U^*) = \mu(\mathcal{U}_r) \cap (U^* \times U^*);$
- 4 for all $x, y \in U^*$: $x^{-1}y \in \mu \Leftrightarrow xy^{-1} \in \mu$;
- 5 μ is "normal" in U^{*}: for all $x \in U^*$ and $y \in \mu$, we have $xyx^{-1} \in \mu$;
- 6 for all $x, y \in U^*$:

 $p(x,y) \approx 0$ for all $p \in P \Leftrightarrow q(x,y) \approx 0$ for all $q \in Q$.

3

- Suppose that G is U-locally uniform, where U is symmetric, and let P be a family of left-invariant pseudometrics on G generating U₁.
- Set $U_{\text{fin},P} := \{x \in U^* \mid \mu(x) \subseteq U^* \text{ and } p(x) \in \mathbb{R}_{\text{fin}} \text{ for all } p \in P\}$. If U = G, then this is Luxembourg's notion of finite.
- Set $\hat{U}_P := U_{\text{fin},P}/\mu$, naturally a uniform space just as before.
- Set $\Omega := \{([x], [y]) \in \hat{U}_P \times \hat{U}_P \mid xy \in U_{fin, P}\}.$
- Then (\hat{U}_P, Ω) is a *local group* with respect to the topology inherited from the uniform structure and the map $x \mapsto [x] : G|U \to \hat{U}_P$ is an injective morphism of local groups.

Local Groups

Definition

A local group is a tuple $(H, 1, \iota, p)$ where:

- *H* is a hausdorff topological space with distinguished element $1 \in H$;
- $\iota : \Lambda \to H$ is continuous, where $\Lambda \subseteq H$ is open;
- $p: \Omega \to H$ is continuous, where $\Omega \subseteq H \times H$ is open;
- $\blacksquare \ 1 \in \Lambda, \{1\} \times H \subseteq \Omega, H \times \{1\} \subseteq \Omega;$

$$p(1, x) = p(x, 1) = x;$$

• if $x \in \Lambda$, then $(x, \iota(x)) \in \Omega$, $(\iota(x), x) \in \Omega$, and

$$p(x,\iota(x)) = p(\iota(x),x) = 1;$$

■ if $(x, y), (y, z) \in \Omega$ and $(p(x, y), z), (x, p(y, z)) \in \Omega$, then

$$p(p(x,y),z) = p(x,p(y,z)).$$

Isaac Goldbring (UCLA)

Locally Uniform Groups

- If *P* is the set of all left-invariant continuous pseudometrics on *G*, then \hat{U}_P is the "smallest" nonstandard hull: for any *P'*, the map $[x]_P \rightarrow [x]_{P'} : \hat{U}_P \rightarrow \hat{U}_{P'}$ is an injective morphism of local groups.
- If $P_1 := \{\min(p, 1) \mid p \in P\}$, then \hat{U}_{P_1} is the "biggest" nonstandard hull: for any P', the map $[x]_{P'} \to [x]_{P_1} : \hat{U}_{P'} \to \hat{U}_{P_1}$ is an injective morphism of local groups.

If *P* is the set of all left-invariant continuous pseudometrics on *G*, then Û_P is the "smallest" nonstandard hull: for any *P'*, the map [*x*]_P → [*x*]_{P'} : Û_P → Û_{P'} is an injective morphism of local groups.
If P₁ := {min(p, 1) | p ∈ P}, then Û_{P1} is the "biggest" nonstandard hull: for any *P'*, the map [*x*]_{P'} → [*x*]_{P1} : Û_{P'} → Û_{P1} is an injective morphism of local groups.

- Suppose that *G* is a metrizable group and you consider the set $\{d\}$, where *d* is a left-invariant metric. Suppose that *G* is *U*-locally uniform. Then \hat{U}_d is metrizable.
- If d' is another left-invariant metric on G, then one can show that \hat{U}_d and $\hat{U}_{d'}$ are locally isomorphic. Thus, there is a unique *metric* nonstandard hull group germ.

Theorem (G.)

Let MGrp denote the category of metrizable groups and let LocGrp denote the category of local group germs. Then the metric nonstandard hull construction is a functor MGrp \rightarrow LocGrp.

- Suppose that H is a local group. Let H^M be the quotient of the set of words on H modulo the transitive closure of the "natural" contraction and expansion operations on words.
- Then H^M is naturally a group, called the *Mal'cev hull* of *H*.
- H^M satisfies the obvious universal mapping property for local group morphisms from H into topological groups.

Theorem (Mal'cev; van den Dries-G.)

If H is globally associative, then the canonical map $H \to H^M$ is injective.

→ ∃ > < ∃</p>

It is easy to see that the nonstandard hull \hat{U} is globally associative.

- Thus, we have the Mal'cev hull of \hat{U} , which we will call \hat{G} , the global nonstandard hull of G.
- What is the relationship between G and \hat{G} ?
- Let U^M be the Mal'cev hull of U (as a local group). Then we have a unique injective group morphism $U^M \to \hat{G}$.
- Thus, if the natural map $U^M \to G$ is an isomorphism, we then have that *G* embeds as a subgroup of \hat{G} .
- Fact (van den Dries): If *G* is locally path connected and simply connected and *U* is connected, then $U^M \rightarrow G$ is an isomorphism.
- In general, the Mal'cev hulls of \hat{U} and \hat{V} will be non-isomorphic, so the global nonstandard hull of *G* is *non-canonical*.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- It is easy to see that the nonstandard hull \hat{U} is globally associative.
- Thus, we have the Mal'cev hull of Û, which we will call Ĝ, the global nonstandard hull of G.
- What is the relationship between G and \hat{G} ?
- Let U^M be the Mal'cev hull of U (as a local group). Then we have a unique injective group morphism $U^M \to \hat{G}$.
- Thus, if the natural map $U^M \to G$ is an isomorphism, we then have that *G* embeds as a subgroup of \hat{G} .
- **Fact (van den Dries):** If *G* is locally path connected and simply connected and *U* is connected, then $U^M \rightarrow G$ is an isomorphism.
- In general, the Mal'cev hulls of \hat{U} and \hat{V} will be non-isomorphic, so the global nonstandard hull of *G* is *non-canonical*.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- It is easy to see that the nonstandard hull \hat{U} is globally associative.
- Thus, we have the Mal'cev hull of \hat{U} , which we will call \hat{G} , the global nonstandard hull of G.
- What is the relationship between G and \hat{G} ?
- Let U^M be the Mal'cev hull of U (as a local group). Then we have a unique injective group morphism $U^M \to \hat{G}$.
- Thus, if the natural map $U^M \to G$ is an isomorphism, we then have that *G* embeds as a subgroup of \hat{G} .
- **Fact (van den Dries):** If *G* is locally path connected and simply connected and *U* is connected, then $U^M \rightarrow G$ is an isomorphism.
- In general, the Mal'cev hulls of \hat{U} and \hat{V} will be non-isomorphic, so the global nonstandard hull of *G* is *non-canonical*.

< ロ > < 同 > < 回 > < 回 >

- It is easy to see that the nonstandard hull \hat{U} is globally associative.
- Thus, we have the Mal'cev hull of \hat{U} , which we will call \hat{G} , the global nonstandard hull of G.
- What is the relationship between G and \hat{G} ?
- Let U^M be the Mal'cev hull of U (as a local group). Then we have a unique injective group morphism $U^M \to \hat{G}$.
- Thus, if the natural map $U^M \to G$ is an isomorphism, we then have that *G* embeds as a subgroup of \hat{G} .
- **Fact (van den Dries):** If *G* is locally path connected and simply connected and *U* is connected, then $U^M \rightarrow G$ is an isomorphism.
- In general, the Mal'cev hulls of \hat{U} and \hat{V} will be non-isomorphic, so the global nonstandard hull of *G* is *non-canonical*.

< ロ > < 同 > < 回 > < 回 >

- It is easy to see that the nonstandard hull \hat{U} is globally associative.
- Thus, we have the Mal'cev hull of Û, which we will call Ĝ, the global nonstandard hull of G.
- What is the relationship between G and \hat{G} ?
- Let U^M be the Mal'cev hull of U (as a local group). Then we have a unique injective group morphism $U^M \to \hat{G}$.
- Thus, if the natural map $U^M \to G$ is an isomorphism, we then have that *G* embeds as a subgroup of \hat{G} .
- **Fact (van den Dries):** If *G* is locally path connected and simply connected and *U* is connected, then $U^M \rightarrow G$ is an isomorphism.
- In general, the Mal'cev hulls of \hat{U} and \hat{V} will be non-isomorphic, so the global nonstandard hull of *G* is *non-canonical*.

- It is easy to see that the nonstandard hull \hat{U} is globally associative.
- Thus, we have the Mal'cev hull of \hat{U} , which we will call \hat{G} , the global nonstandard hull of G.
- What is the relationship between G and Ĝ?
- Let U^M be the Mal'cev hull of U (as a local group). Then we have a unique injective group morphism $U^M \to \hat{G}$.
- Thus, if the natural map $U^M \to G$ is an isomorphism, we then have that *G* embeds as a subgroup of \hat{G} .
- **Fact (van den Dries):** If *G* is locally path connected and simply connected and *U* is connected, then $U^M \rightarrow G$ is an isomorphism.
- In general, the Mal'cev hulls of \hat{U} and \hat{V} will be non-isomorphic, so the global nonstandard hull of *G* is *non-canonical*.

- It is easy to see that the nonstandard hull \hat{U} is globally associative.
- Thus, we have the Mal'cev hull of \hat{U} , which we will call \hat{G} , the global nonstandard hull of G.
- What is the relationship between G and \hat{G} ?
- Let U^M be the Mal'cev hull of U (as a local group). Then we have a unique injective group morphism $U^M \to \hat{G}$.
- Thus, if the natural map $U^M \to G$ is an isomorphism, we then have that *G* embeds as a subgroup of \hat{G} .
- **Fact (van den Dries):** If *G* is locally path connected and simply connected and *U* is connected, then $U^M \rightarrow G$ is an isomorphism.
- In general, the Mal'cev hulls of \hat{U} and \hat{V} will be non-isomorphic, so the global nonstandard hull of *G* is *non-canonical*.

UNSS groups

Recall that *G* is *NSS* if there is a neighborhood *U* of 1 in *G* such that the only subgroup of *G* contained in *U* is {1}; equivalently, the only internal subgroup of μ is {1}. NSS is the key property used in the study of Hilbert's fifth problem. In order to pursue Hilbert's fifth problem in infinite-dimensions, Enflo introduced the following notion:

Definition (Enflo)

G is *UNSS* (uniformly free from small subgroups) if there is a neighborhood *U* of 1 in *G* such that, for all neighborhoods *V* of 1, there is $n_V \in \mathbb{N}$ such that for all $x \in G \setminus V$, $x^n \notin U$ for some $n \leq n_V$.

Lemma (Enflo)

If G is UNSS, then G is locally uniform and metrizable.

UNSS groups

Recall that *G* is *NSS* if there is a neighborhood *U* of 1 in *G* such that the only subgroup of *G* contained in *U* is {1}; equivalently, the only internal subgroup of μ is {1}. NSS is the key property used in the study of Hilbert's fifth problem. In order to pursue Hilbert's fifth problem in infinite-dimensions, Enflo introduced the following notion:

Definition (Enflo)

G is *UNSS* (uniformly free from small subgroups) if there is a neighborhood *U* of 1 in *G* such that, for all neighborhoods *V* of 1, there is $n_V \in \mathbb{N}$ such that for all $x \in G \setminus V$, $x^n \notin U$ for some $n \leq n_V$.

Lemma (Enflo)

If G is UNSS, then G is locally uniform and metrizable.

- Locally compact groups
- Banach-Lie groups
- Fact (G.): If *G* is a locally exponential Lie group, then *G* is UNSS if and only if the Lie algebra of *G* is normable.
- Continuous inverse algebras ("linear groups")
- (Omori) Strong ILB Lie groups; in particular, when M is a compact manifold, then G := Diff(M) is a strong ILB Lie group (that is not locally exponential)

.

Nonstandard characterization of UNSS

Theorem (G.)

Let G be a locally uniform group. Then the following are equivalent:

- G is uniformly NSS;
- 2 G is metrizable and the metric nonstandard hull is uniformly NSS;
- **3** *G* is metrizable and the metric nonstandard hull is NSS;
- 4 G is metrizable and every nonstandard hull of G is NSS.

4 D b 4 A b

An Example: Unit groups of Banach algebras

- Suppose that A is a Banach algebra and G := A[×], the unit group of A.
- Then G is a Banach-Lie group, whence locally uniform.
- Let *d* be a left-invariant metric on *G* and let *ϵ* > 0 be such that, setting *W* := *B_d*(1; *ϵ*), we have *W* ⊆ {*x* ∈ *A* : ||*x* − 1|| < 1} ⊆ *G* and *G* is *W*-uniform.
- Let $\hat{\mathcal{A}}$ be the nonstandard hull of \mathcal{A} , once again a Banach algebra.

Proposition (G.)

 \hat{W} is a restriction of $U(\hat{A})$ to a symmetric neighborhood of the origin.

An Example: Unit groups of Banach algebras

- Suppose that A is a Banach algebra and G := A[×], the unit group of A.
- Then G is a Banach-Lie group, whence locally uniform.
- Let *d* be a left-invariant metric on *G* and let *ϵ* > 0 be such that, setting *W* := *B_d*(1; *ϵ*), we have *W* ⊆ {*x* ∈ *A* : ||*x* − 1|| < 1} ⊆ *G* and *G* is *W*-uniform.
- Let $\hat{\mathcal{A}}$ be the nonstandard hull of \mathcal{A} , once again a Banach algebra.

Proposition (G.)

 \hat{W} is a restriction of $U(\hat{A})$ to a symmetric neighborhood of the origin.

3

Pestov's Nonstandard Hull for Banach-Lie groups

- Suppose that *G* is a Banach-Lie group with Lie algebra g.
- Let $exp : \mathfrak{g} \to G$ be the usual exponential map.

• Let
$$G_{fin, Pestov} := \exp(\mathfrak{g}_{fin})$$

 Fact: (Pestov) G_{fin,Pestov} is a group and μ_G is a normal subgroup of G_{fin}. (Uses some nontrivial Lie theory)

• Let
$$\hat{G}_{Pestov} := G_{fin, Pestov} / \mu_G$$
.

Theorem (G.)

Suppose that G is a Banach-Lie group and U is such that G is U-uniform. Then \hat{U} is locally isomorphic to \hat{G}_{Pestov} .

Theorem (G.)

For suitable U, the Mal'cev hull of \hat{U} is the universal covering group of \hat{G}_{Pestov} .

Isaac Goldbring (UCLA)

Pestov's Nonstandard Hull for Banach-Lie groups

- Suppose that *G* is a Banach-Lie group with Lie algebra g.
- Let $exp : \mathfrak{g} \to G$ be the usual exponential map.

• Let
$$G_{fin, Pestov} := \exp(\mathfrak{g}_{fin})$$

 Fact: (Pestov) G_{fin,Pestov} is a group and μ_G is a normal subgroup of G_{fin}. (Uses some nontrivial Lie theory)

• Let
$$\hat{G}_{Pestov} := G_{fin, Pestov} / \mu_G$$
.

Theorem (G.)

Suppose that G is a Banach-Lie group and U is such that G is U-uniform. Then \hat{U} is locally isomorphic to \hat{G}_{Pestov} .

Theorem (G.)

For suitable U, the Mal'cev hull of \hat{U} is the universal covering group of \hat{G}_{Pestov} .

Isaac Goldbring (UCLA)

Pestov's Nonstandard Hull for Banach-Lie groups

- Suppose that *G* is a Banach-Lie group with Lie algebra g.
- Let $exp : \mathfrak{g} \to G$ be the usual exponential map.

• Let
$$G_{fin, Pestov} := \exp(\mathfrak{g}_{fin})$$

 Fact: (Pestov) G_{fin,Pestov} is a group and μ_G is a normal subgroup of G_{fin}. (Uses some nontrivial Lie theory)

• Let
$$\hat{G}_{Pestov} := G_{fin, Pestov} / \mu_G$$
.

Theorem (G.)

Suppose that G is a Banach-Lie group and U is such that G is U-uniform. Then \hat{U} is locally isomorphic to \hat{G}_{Pestov} .

Theorem (G.)

For suitable U, the Mal'cev hull of \hat{U} is the universal covering group of \hat{G}_{Pestov} .

Isaac Goldbring (UCLA)

Locally Uniform Groups

Definition (Henson, Moore)

Suppose that (X, U) is a uniform space. Then $a \in X^*$ is U-finite if, for every $A \in U$, there is a sequence $a_0, \ldots, a_n \in X^*$ such that $a_0 = a$, $a_n \in X$, and $(a_i, a_{i+1}) \in A^*$ for each i < n. Let $X_{\text{fin}}^{\mathcal{U}}$ denote the \mathcal{U} -finite points.

It is easy to see that $X_{fin}^{\mathcal{U}} \subseteq X_{fin,P}$ for any P.

Lemma (G.)

Suppose that G is U-locally uniform and that $V \subseteq U$ is a symmetric neighborhood of 1 satisfying $V^2 \subseteq U$. Then $V_{\text{fin}}^{\mathcal{U}} \cdot V_{\text{fin}}^{\mathcal{U}} \subseteq U_{\text{fin}}^{\mathcal{U}}$ and $(U_{\text{fin}}^{\mathcal{U}})^{-1} = U_{\text{fin}}^{\mathcal{U}}$.

Definition (Henson, Moore)

Suppose that (X, U) is a uniform space. Then $a \in X^*$ is U-finite if, for every $A \in U$, there is a sequence $a_0, \ldots, a_n \in X^*$ such that $a_0 = a$, $a_n \in X$, and $(a_i, a_{i+1}) \in A^*$ for each i < n. Let $X_{\text{fin}}^{\mathcal{U}}$ denote the \mathcal{U} -finite points.

It is easy to see that
$$X_{fin}^{\mathcal{U}} \subseteq X_{fin,P}$$
 for any P .

Lemma (G.)

Suppose that G is U-locally uniform and that $V \subseteq U$ is a symmetric neighborhood of 1 satisfying $V^2 \subseteq U$. Then $V_{\text{fin}}^{\mathcal{U}} \cdot V_{\text{fin}}^{\mathcal{U}} \subseteq U_{\text{fin}}^{\mathcal{U}}$ and $(U_{\text{fin}}^{\mathcal{U}})^{-1} = U_{\text{fin}}^{\mathcal{U}}$.

<ロト < 回 > < 回 > < 回 > < 回 > … 回

Definition (Henson, Moore)

Suppose that (X, U) is a uniform space. Then $a \in X^*$ is U-finite if, for every $A \in U$, there is a sequence $a_0, \ldots, a_n \in X^*$ such that $a_0 = a$, $a_n \in X$, and $(a_i, a_{i+1}) \in A^*$ for each i < n. Let $X_{\text{fin}}^{\mathcal{U}}$ denote the \mathcal{U} -finite points.

It is easy to see that $X_{\text{fin},P}^{\mathcal{U}} \subseteq X_{\text{fin},P}$ for any *P*.

Lemma (G.)

Suppose that G is U-locally uniform and that $V \subseteq U$ is a symmetric neighborhood of 1 satisfying $V^2 \subseteq U$. Then $V_{\text{fin}}^{\mathcal{U}} \cdot V_{\text{fin}}^{\mathcal{U}} \subseteq U_{\text{fin}}^{\mathcal{U}}$ and $(U_{\text{fin}}^{\mathcal{U}})^{-1} = U_{\text{fin}}^{\mathcal{U}}$.

Isaac Goldbring (UCLA)

Another approach (cont'd)

Corollary

If G is a uniform group, then $G_{fin}^{\mathcal{U}}$ is a subgroup of G_{fin} , yielding a smaller nonstandard hull $\hat{G}^{\mathcal{U}} := G_{fin}^{\mathcal{U}} / \mu_G \leq \hat{G}_P$.

Example

If *E* is a locally convex vector space, then $E_{\text{fin}} = E_{\text{fin}}^{\mathcal{U}} = E_{\text{fin}}^{\text{tvs}}$.

Question

Is there a uniform group *G* such that $\hat{G}^{U} < \hat{G}_{P}$?

Question

 $X_{\text{fin}}^{\mathcal{U}} = X^*$ if and only if every uniformly continuous function $X \to \mathbb{R}$ is bounded. (Henson) Which groups have this property? (If *G* satisfies this property and is complete, then every morphism $G \to \mathbb{R}$ is trivial.)

Isaac Goldbring (UCLA)

Another approach (cont'd)

Corollary

If G is a uniform group, then $G_{fin}^{\mathcal{U}}$ is a subgroup of G_{fin} , yielding a smaller nonstandard hull $\hat{G}^{\mathcal{U}} := G_{fin}^{\mathcal{U}} / \mu_G \leq \hat{G}_P$.

Example

If *E* is a locally convex vector space, then $E_{\text{fin}} = E_{\text{fin}}^{\mathcal{U}} = E_{\text{fin}}^{\text{tvs}}$.

Question

Is there a uniform group *G* such that $\hat{G}^{U} < \hat{G}_{P}$?

Question

 $X_{\text{fin}}^{\mathcal{U}} = X^*$ if and only if every uniformly continuous function $X \to \mathbb{R}$ is bounded. (Henson) Which groups have this property? (If *G* satisfies this property and is complete, then every morphism $G \to \mathbb{R}$ is trivial.)

Isaac Goldbring (UCLA)

Another approach (cont'd)

Corollary

If G is a uniform group, then $G_{fin}^{\mathcal{U}}$ is a subgroup of G_{fin} , yielding a smaller nonstandard hull $\hat{G}^{\mathcal{U}} := G_{fin}^{\mathcal{U}} / \mu_G \leq \hat{G}_P$.

Example

If *E* is a locally convex vector space, then $E_{\text{fin}} = E_{\text{fin}}^{\mathcal{U}} = E_{\text{fin}}^{\text{tvs}}$.

Question

Is there a uniform group *G* such that $\hat{G}^{\mathcal{U}} < \hat{G}_{P}$?

Question

 $X_{\text{fin}}^{\mathcal{U}} = X^*$ if and only if every uniformly continuous function $X \to \mathbb{R}$ is bounded. (Henson) Which groups have this property? (If *G* satisfies this property and is complete, then every morphism $G \to \mathbb{R}$ is trivial.)

Isaac Goldbring (UCLA)

Locally Uniform Groups

19/19