# Nonstandard hulls of locally uniform groups 

Isaac Goldbring

UCLA
Special Session on Nonstandard Analysis AMS Spring Sectional Meeting University of Hawaii at Manoa

March 3, 2012

## Nonstandard hulls of uniform spaces á la Luxembourg

■ Suppose that $(X, \mathcal{U})$ is a uniform space and $e \in X$.
$\square$ Let $P$ be a family of pseudometrics generating the uniformity.
$■$ Set $X_{\text {fin }, P}:=\left\{x \in X^{*} \mid p(x, e) \in \mathbb{R}_{\text {fin }}\right.$ for all $\left.p \in P\right\}$.
$\square$ Set $\mu(\mathcal{U}):=\bigcap_{U \in \mathcal{U}} U^{*}$.
■ Set $\hat{X}_{P}:=X_{\text {fin }, P} / \mu(\mathcal{U})$.
■ Then $\hat{X}_{P}$ is a uniform space with uniformity generated by the set of pseudometrics $\{\hat{p} \mid p \in P\}$, where $\hat{p}([x],[y]):=\operatorname{st}(p(x, y))$. We refer to $\hat{X}_{P}$ as a nonstandard hull of $X$.

## Remark

This procedure depends on the choice of $P$. For example, given $P$, define $P^{\prime}:=\{\min (p, 1) \mid p \in P\}$. Then $X_{\mathrm{fin}, P^{\prime}}=X^{*}$.

## The case of topological groups

Let $(G, \tau)$ be a topological group. Then $(G, \mathcal{U})$ is a uniform space, where $\mathcal{U}$ is either the left uniformity $\mathcal{U}_{l}$ or the right uniformity $\mathcal{U}_{r}$ :
$1 \mathcal{U}_{\text {I }}$ has base $\left\{(x, y) \mid x^{-1} y \in U\right\}$, with $U \in \tau$.
$2 \mathcal{U}_{r}$ has base $\left\{(x, y) \mid x y^{-1} \in U\right\}$, with $U \in \tau$.

## Question

Is the nonstandard hull of $(G, \mathcal{U})$, in a natural way, a topological group again?

## Answer

For certain groups, the answer is almost yes.

## Locally uniform groups

$$
U^{n}:=\left\{x_{1} \cdots x_{n} \mid \text { each } x_{i} \in U\right\} .
$$

## Definition (Enflo)

$G$ is locally uniform if there is a symmetric open neighborhood $U$ of the identity in $G$ and a uniformity $\mathcal{U}$ compatible with the topology such that $(x, y) \mapsto x y: U^{2} \times U^{2} \rightarrow U^{4}$ is $\mathcal{U}$-uniformly continuous.

## Lemma (Enflo) <br> Sunnose that $G$ is locally uniform as witnessed by $U$ and $U$. Then $\mathcal{U}\left|U=\mathcal{U}_{\mid}\right| U=\mathcal{U}_{r} \mid U$ and $x \mapsto x^{-1}: U \rightarrow U$ is $\mathcal{U}$-uniformly continuous. <br> We will refer to $G$ as being $U$-locally uniform. If $U=G$, then we call $G$ a uniform group.

## Locally uniform groups

$$
U^{n}:=\left\{x_{1} \cdots x_{n} \mid \text { each } x_{i} \in U\right\} .
$$

## Definition (Enflo)

$G$ is locally uniform if there is a symmetric open neighborhood $U$ of the identity in $G$ and a uniformity $\mathcal{U}$ compatible with the topology such that $(x, y) \mapsto x y: U^{2} \times U^{2} \rightarrow U^{4}$ is $\mathcal{U}$-uniformly continuous.

## Lemma (Enflo)

Suppose that $G$ is locally uniform as witnessed by $U$ and $\mathcal{U}$. Then $\mathcal{U}\left|U=\mathcal{U}_{\|}\right| U=\mathcal{U}_{r} \mid U$ and $x \mapsto x^{-1}: U \rightarrow U$ is $\mathcal{U}$-uniformly continuous.

We will refer to $G$ as being $U$-locally uniform. If $U=G$, then we call $G$ a uniform group.

## Examples of locally uniform groups

## Examples

1 Locally compact groups
2 Locally abelian groups
3 Groups that admit locally two-sided invariant metrics
4 Certain infinite-dimensional Lie groups

## Equivalent formulations

Let $P$ (resp. $Q$ ) be the set of left-invariant (resp. right-invariant) continuous pseudometrics on $G$.

## Lemma

The following are equivalent:
1 G is U-locally uniform;
$2 \mathcal{U}_{1}\left|U=\mathcal{U}_{r}\right| U$;
$3 \mu\left(\mathcal{U}_{l}\right) \cap\left(U^{*} \times U^{*}\right)=\mu\left(\mathcal{U}_{r}\right) \cap\left(U^{*} \times U^{*}\right)$;
4 for all $x, y \in U^{*}: x^{-1} y \in \mu \Leftrightarrow x y^{-1} \in \mu$;
$5 \mu$ is "normal" in $U^{*}$ : for all $x \in U^{*}$ and $y \in \mu$, we have $x y x^{-1} \in \mu$;
6 for all $x, y \in U^{*}$ :

$$
p(x, y) \approx 0 \text { for all } p \in P \Leftrightarrow q(x, y) \approx 0 \text { for all } q \in Q
$$

## Nonstandard hulls

■ Suppose that $G$ is $U$-locally uniform, where $U$ is symmetric, and let $P$ be a family of left-invariant pseudometrics on $G$ generating $\mathcal{U}_{1}$.
$\square$ Set $U_{\text {fin }, P}:=\left\{x \in U^{*} \mid \mu(x) \subseteq U^{*}\right.$ and $p(x) \in \mathbb{R}_{\text {fin }}$ for all $\left.p \in P\right\}$. If $U=G$, then this is Luxembourg's notion of finite.
■ Set $\hat{U}_{P}:=U_{\text {fin }, P} / \mu$, naturally a uniform space just as before.
$■$ Set $\Omega:=\left\{([x],[y]) \in \hat{U}_{P} \times \hat{U}_{P} \mid x y \in U_{\text {fin }, P}\right\}$.
■ Then $\left(\hat{U}_{P}, \Omega\right)$ is a local group with respect to the topology inherited from the uniform structure and the map $x \mapsto[x]: G \mid U \rightarrow \hat{U}_{P}$ is an injective morphism of local groups.

## Local Groups

## Definition

A local group is a tuple $(H, 1, \iota, p)$ where:
$\square H$ is a hausdorff topological space with distinguished element $1 \in H$;
$\square \iota: \Lambda \rightarrow H$ is continuous, where $\Lambda \subseteq H$ is open;
$\square p: \Omega \rightarrow H$ is continuous, where $\Omega \subseteq H \times H$ is open;

- $1 \in \Lambda,\{1\} \times H \subseteq \Omega, H \times\{1\} \subseteq \Omega$;

■ $p(1, x)=p(x, 1)=x$;
$\square$ if $x \in \Lambda$, then $(x, \iota(x)) \in \Omega,(\iota(x), x) \in \Omega$, and

$$
p(x, \iota(x))=p(\iota(x), x)=1 \text {; }
$$

$\square$ if $(x, y),(y, z) \in \Omega$ and $(p(x, y), z),(x, p(y, z)) \in \Omega$, then

$$
p(p(x, y), z)=p(x, p(y, z))
$$

## The extremes

■ If $P$ is the set of all left-invariant continuous pseudometrics on $G$, then $\hat{U}_{P}$ is the "smallest" nonstandard hull: for any $P^{\prime}$, the map $[x]_{P} \rightarrow[x]_{P^{\prime}}: \hat{U}_{P} \rightarrow \hat{U}_{P^{\prime}}$ is an injective morphism of local groups.

## - If $P_{1}:=\{\min (p, 1) \mid p \in P\}$, then $\hat{U}_{P_{1}}$ is the "biggest" nonstandard hull: for any $P^{\prime}$, the map $[x]_{P^{\prime}} \rightarrow[x]_{P_{1}}: \hat{U}_{P^{\prime}} \rightarrow \hat{U}_{P_{1}}$ is an injective morphism of local groups.

## The extremes

■ If $P$ is the set of all left-invariant continuous pseudometrics on $G$, then $\hat{U}_{P}$ is the "smallest" nonstandard hull: for any $P^{\prime}$, the map $[x]_{P} \rightarrow[x]_{P^{\prime}}: \hat{U}_{P} \rightarrow \hat{U}_{P^{\prime}}$ is an injective morphism of local groups.
■ If $P_{1}:=\{\min (p, 1) \mid p \in P\}$, then $\hat{U}_{P_{1}}$ is the "biggest" nonstandard hull: for any $P^{\prime}$, the map $[x]_{P^{\prime}} \rightarrow[x]_{P_{1}}: \hat{U}_{P^{\prime}} \rightarrow \hat{U}_{P_{1}}$ is an injective morphism of local groups.

## Metrizable groups

- Suppose that $G$ is a metrizable group and you consider the set $\{d\}$, where $d$ is a left-invariant metric. Suppose that $G$ is $U$-locally uniform. Then $\hat{U}_{d}$ is metrizable.
- If $d^{\prime}$ is another left-invariant metric on $G$, then one can show that $\hat{U}_{d}$ and $\hat{U}_{d^{\prime}}$ are locally isomorphic. Thus, there is a unique metric nonstandard hull group germ.


## Theorem (G.)

Let MGrp denote the category of metrizable groups and let LocGrp denote the category of local group germs. Then the metric nonstandard hull construction is a functor MGrp $\rightarrow$ LocGrp.

## Mal'cev hulls

■ Suppose that $H$ is a local group. Let $H^{M}$ be the quotient of the set of words on H modulo the transitive closure of the "natural" contraction and expansion operations on words.
■ Then $H^{M}$ is naturally a group, called the Mal'cev hull of $H$.

- $H^{M}$ satisfies the obvious universal mapping property for local group morphisms from $H$ into topological groups.


## Theorem (Mal'cev; van den Dries-G.)

If $H$ is globally associative, then the canonical map $H \rightarrow H^{M}$ is injective.

## Global nonstandard hulls

■ It is easy to see that the nonstandard hull $\hat{U}$ is globally associative.

- Thus, we have the Mal'cev hull of $\hat{U}$, which we will call $\hat{G}$, the global nonstandard hull of G.
- What is the relationship between $G$ and $\hat{G}$ ?
- Let $U^{M}$ be the Mal'cev hull of $U$ (as a local group). Then we have a unique injective group morphism $U^{M} \rightarrow \widehat{G}$.
- Thus, if the natural map $U^{M} \rightarrow G$ is an isomorphism, we then have that $G$ embeds as a subgroup of $\hat{G}$.
- Fact (van den Dries): If $G$ is locally path connected and simply connected and $U$ is connected, then $U^{M} \rightarrow G$ is an isomorphism.
- In general, the Mal'cev hulls of $\hat{U}$ and $\hat{V}$ will be non-isomorphic, so the global nonstandard hull of $G$ is non-canonical.


## Global nonstandard hulls

- It is easy to see that the nonstandard hull $\hat{U}$ is globally associative.
- Thus, we have the Mal'cev hull of $\hat{U}$, which we will call $\hat{G}$, the global nonstandard hull of $G$.
- What is the relationship between $G$ and $\hat{G}$ ?
$■$ Let $U^{M}$ be the Mal'cev hull of $U$ (as a local group). Then we have a unique injective group morphism $U^{M} \rightarrow \hat{G}$.
- Thus, if the natural map $U^{M} \rightarrow G$ is an isomorphism, we then have that $G$ embeds as a subgroup of $\hat{G}$.
- Fact (van den Dries): If $G$ is locally path connected and simply connected and $U$ is connected, then $U^{M} \rightarrow G$ is an isomorphism.
- In general, the Mal'cev hulls of U and V will be non-isomorphic, so the global nonstandard hull of $G$ is non-canonical.


## Global nonstandard hulls

■ It is easy to see that the nonstandard hull $\hat{U}$ is globally associative.

- Thus, we have the Mal'cev hull of $\hat{U}$, which we will call $\hat{G}$, the global nonstandard hull of $G$.
- What is the relationship between $G$ and $\hat{G}$ ?
- Let $U^{M}$ be the Mal'cev hull of $U$ (as a local group). Then we have a unique injective group morphism $U^{M} \rightarrow \hat{G}$.
- Thus, if the natural man $J^{M} \rightarrow G$ is an isomorphism, we then have that $G$ embeds as a subgroup of $\widehat{G}$.
- Fact (van den Dries): If $G$ is locally path connected and simply connected and $U$ is connected, then $U^{M} \rightarrow G$ is an isomorphism.
- In general, the Mal'cev hulls of $\hat{U}$ and $\hat{V}$ will be non-isomorphic, so the global nonstandard hull of $G$ is non-canonical.


## Global nonstandard hulls

■ It is easy to see that the nonstandard hull $\hat{U}$ is globally associative.

- Thus, we have the Mal'cev hull of $\hat{U}$, which we will call $\hat{G}$, the global nonstandard hull of G.
$■$ What is the relationship between $G$ and $\hat{G}$ ?
■ Let $U^{M}$ be the Mal'cev hull of $U$ (as a local group). Then we have a unique injective group morphism $U^{M} \rightarrow \hat{G}$.
> - Thus, if the natural map $U^{M} \rightarrow G$ is an isomorphism, we then have that $G$ embeds as a subgroup of $\hat{G}$.

> E Fact (van den Dries): If $G$ is locally nath connected and simply connected and $U$ is connected, then $U^{M} \rightarrow G$ is an isomorphism.
> - In general, the Mal'cev hulls of $\hat{U}$ and $\hat{V}$ will be non-isomorphic, so the global nonstandard hull of $G$ is non-canonical.

## Global nonstandard hulls

- It is easy to see that the nonstandard hull $\hat{U}$ is globally associative.
- Thus, we have the Mal'cev hull of $\hat{U}$, which we will call $\hat{G}$, the global nonstandard hull of $G$.
- What is the relationship between $G$ and $\hat{G}$ ?
- Let $U^{M}$ be the Mal'cev hull of $U$ (as a local group). Then we have a unique injective group morphism $U^{M} \rightarrow \hat{G}$.
- Thus, if the natural map $U^{M} \rightarrow G$ is an isomorphism, we then have that $G$ embeds as a subgroup of $\hat{G}$.
> - Fact (van den Dries): If $G$ is locally path connected and simply connected and $U$ is connected, then $U^{M} \rightarrow G$ is an isomorphism.
> - In general the Mal'cev hulls of $\hat{U}$ and $\hat{V}$ will be non-isomornhic, so the global nonstandard hull of $G$ is non-canonical.


## Global nonstandard hulls

■ It is easy to see that the nonstandard hull $\hat{U}$ is globally associative.

- Thus, we have the Mal'cev hull of $\hat{U}$, which we will call $\hat{G}$, the global nonstandard hull of G.
$\square$ What is the relationship between $G$ and $\hat{G}$ ?
■ Let $U^{M}$ be the Mal'cev hull of $U$ (as a local group). Then we have a unique injective group morphism $U^{M} \rightarrow \hat{G}$.
- Thus, if the natural map $U^{M} \rightarrow G$ is an isomorphism, we then have that $G$ embeds as a subgroup of $\hat{G}$.
- Fact (van den Dries): If $G$ is locally path connected and simply connected and $U$ is connected, then $U^{M} \rightarrow G$ is an isomorphism.
- In general, the Mal'cev hulls of $\hat{U}$ and $\hat{V}$ will be non-isomorphic, so the global nonstandard hull of $G$ is non-canonical.


## Global nonstandard hulls

■ It is easy to see that the nonstandard hull $\hat{U}$ is globally associative.

- Thus, we have the Mal'cev hull of $\hat{U}$, which we will call $\hat{G}$, the global nonstandard hull of G.
■ What is the relationship between $G$ and $\hat{G}$ ?
■ Let $U^{M}$ be the Mal'cev hull of $U$ (as a local group). Then we have a unique injective group morphism $U^{M} \rightarrow \hat{G}$.
■ Thus, if the natural map $U^{M} \rightarrow G$ is an isomorphism, we then have that $G$ embeds as a subgroup of $\hat{G}$.
- Fact (van den Dries): If $G$ is locally path connected and simply connected and $U$ is connected, then $U^{M} \rightarrow G$ is an isomorphism.
- In general, the Mal'cev hulls of $\hat{U}$ and $\hat{V}$ will be non-isomorphic, so the global nonstandard hull of $G$ is non-canonical.


## UNSS groups

Recall that $G$ is NSS if there is a neighborhood $U$ of 1 in $G$ such that the only subgroup of $G$ contained in $U$ is $\{1\}$; equivalently, the only internal subgroup of $\mu$ is $\{1\}$. NSS is the key property used in the study of Hilbert's fifth problem. In order to pursue Hilbert's fifth problem in infinite-dimensions, Enflo introduced the following notion:


Lemma (Enflo)
If $G$ is IINISS, then $G$ is locally uniform and metrizable.

## UNSS groups

Recall that $G$ is NSS if there is a neighborhood $U$ of 1 in $G$ such that the only subgroup of $G$ contained in $U$ is $\{1\}$; equivalently, the only internal subgroup of $\mu$ is $\{1\}$. NSS is the key property used in the study of Hilbert's fifth problem. In order to pursue Hilbert's fifth problem in infinite-dimensions, Enflo introduced the following notion:

## Definition (Enflo)

$G$ is UNSS (uniformly free from small subgroups) if there is a neighborhood $U$ of 1 in $G$ such that, for all neighborhoods $V$ of 1 , there is $n_{V} \in \mathbb{N}$ such that for all $x \in G \backslash V, x^{n} \notin U$ for some $n \leq n_{V}$.

## Lemma (Enflo)

If $G$ is UNSS, then $G$ is locally uniform and metrizable.

## Examples of UNSS groups

■ Locally compact groups

- Banach-Lie groups

■ Fact (G.): If $G$ is a locally exponential Lie group, then $G$ is UNSS if and only if the Lie algebra of $G$ is normable.
■ Continuous inverse algebras ("linear groups")
■ (Omori) Strong ILB Lie groups; in particular, when $M$ is a compact manifold, then $G:=\operatorname{Diff}(M)$ is a strong ILB Lie group (that is not locally exponential)

## Nonstandard characterization of UNSS

## Theorem (G.)

Let $G$ be a locally uniform group. Then the following are equivalent:
1 G is uniformly NSS;
2 G is metrizable and the metric nonstandard hull is uniformly NSS;
$3 G$ is metrizable and the metric nonstandard hull is NSS;
$4 G$ is metrizable and every nonstandard hull of $G$ is NSS.

## An Example: Unit groups of Banach algebras

■ Suppose that $\mathcal{A}$ is a Banach algebra and $G:=A^{\times}$, the unit group of $\mathcal{A}$.
■ Then $G$ is a Banach-Lie group, whence locally uniform.
$■$ Let $d$ be a left-invariant metric on $G$ and let $\epsilon>0$ be such that, setting $W:=B_{d}(1 ; \epsilon)$, we have $W \subseteq\{x \in \mathcal{A}:\|x-1\|<1\} \subseteq G$ and $G$ is $W$-uniform.
$■$ Let $\hat{\mathcal{A}}$ be the nonstandard hull of $\mathcal{A}$, once again a Banach algebra.

[^0]
## An Example: Unit groups of Banach algebras

■ Suppose that $\mathcal{A}$ is a Banach algebra and $G:=A^{\times}$, the unit group of $\mathcal{A}$.
■ Then $G$ is a Banach-Lie group, whence locally uniform.
■ Let $d$ be a left-invariant metric on $G$ and let $\epsilon>0$ be such that, setting $W:=B_{d}(1 ; \epsilon)$, we have $W \subseteq\{x \in \mathcal{A}:\|x-1\|<1\} \subseteq G$ and $G$ is $W$-uniform.
$■$ Let $\hat{\mathcal{A}}$ be the nonstandard hull of $\mathcal{A}$, once again a Banach algebra.

## Proposition (G.)

$\hat{W}$ is a restriction of $U(\hat{\mathcal{A}})$ to a symmetric neighborhood of the origin.

## Pestov's Nonstandard Hull for Banach-Lie groups

■ Suppose that $G$ is a Banach-Lie group with Lie algebra $\mathfrak{g}$.
$■$ Let $\exp : \mathfrak{g} \rightarrow G$ be the usual exponential map.
■ Let $G_{\text {fin }, \text { Pestov }}:=\exp \left(\mathfrak{g}_{\text {fin }}\right)$
■ Fact: (Pestov) $G_{\text {fin }, \text { Pestov }}$ is a group and $\mu_{G}$ is a normal subgroup of $G_{\text {fin }}$. (Uses some nontrivial Lie theory)
$■$ Let $\hat{G}_{\text {Pestov }}:=G_{\mathrm{fin}, \text { Pestov }} / \mu_{G}$.

> Theorem (G.)
> Suppose that $G$ is a Banach-Lie group and $U$ is such that $G$ is $U$-uniform. Then $\hat{U}$ is locally isomorphic to $\hat{G}_{\text {Pestov }}$.

$\square$
For suitable $U$, the Mal'cev hull of $U$ is the universal covering group of $\hat{G}_{\text {Pestov }}$

## Pestov's Nonstandard Hull for Banach-Lie groups

- Suppose that $G$ is a Banach-Lie group with Lie algebra $\mathfrak{g}$.
- Let exp : $\mathfrak{g} \rightarrow G$ be the usual exponential map.
- Let $G_{\text {fin }, \text { Pestov }}:=\exp \left(\mathfrak{g}_{\text {fin }}\right)$

■ Fact: (Pestov) $G_{\text {fin }, \text { Pestov }}$ is a group and $\mu_{G}$ is a normal subgroup of $G_{\text {fin. }}$. (Uses some nontrivial Lie theory)
■ Let $\hat{G}_{\text {Pestov }}:=G_{\text {fin }, \text { Pestov }} / \mu_{G}$.

## Theorem (G.)

Suppose that $G$ is a Banach-Lie group and $U$ is such that $G$ is $U$-uniform. Then $\hat{U}$ is locally isomorphic to $\hat{G}_{\text {Pestov }}$.
$\square$
For suitable $U$, the Mal'cev hull of $\hat{U}$ is the universal covering group of

## Pestov's Nonstandard Hull for Banach-Lie groups

- Suppose that $G$ is a Banach-Lie group with Lie algebra $\mathfrak{g}$.
- Let exp : $\mathfrak{g} \rightarrow G$ be the usual exponential map.
- Let $G_{\text {fin }, \text { Pestov }}:=\exp \left(\mathfrak{g}_{\text {fin }}\right)$

■ Fact: (Pestov) $G_{\text {fin }, \text { Pestov }}$ is a group and $\mu_{G}$ is a normal subgroup of $G_{\text {fin }}$. (Uses some nontrivial Lie theory)
■ Let $\hat{G}_{\text {Pestov }}:=G_{\text {fin }, \text { Pestov }} / \mu_{G}$.

## Theorem (G.)

Suppose that $G$ is a Banach-Lie group and $U$ is such that $G$ is $U$-uniform. Then $\hat{U}$ is locally isomorphic to $\hat{G}_{\text {Pestov }}$.

## Theorem (G.)

For suitable $U$, the Mal'cev hull of $\hat{U}$ is the universal covering group of $\hat{G}_{\text {Pestov }}$.

## Another approach

## Definition (Henson, Moore)

Suppose that $(X, \mathcal{U})$ is a uniform space. Then $a \in X^{*}$ is $\mathcal{U}$-finite if, for every $A \in \mathcal{U}$, there is a sequence $a_{0}, \ldots, a_{n} \in X^{*}$ such that $a_{0}=a$, $a_{n} \in X$, and $\left(a_{i}, a_{i+1}\right) \in A^{*}$ for each $i<n$. Let $X_{\text {fin }}^{\mathcal{U}}$ denote the $\mathcal{U}$-finite points.

It is easy to see that $X_{\text {fin }}^{U} \subseteq X_{\text {fin }, P}$ for any $P$.


## Another approach

## Definition (Henson, Moore)

Suppose that $(X, \mathcal{U})$ is a uniform space. Then $a \in X^{*}$ is $\mathcal{U}$-finite if, for every $A \in \mathcal{U}$, there is a sequence $a_{0}, \ldots, a_{n} \in X^{*}$ such that $a_{0}=a$, $a_{n} \in X$, and $\left(a_{i}, a_{i+1}\right) \in A^{*}$ for each $i<n$. Let $X_{\text {fin }}^{\mathcal{U}}$ denote the $\mathcal{U}$-finite points.

It is easy to see that $X_{\text {fin }}^{\mathcal{U}} \subseteq X_{\text {fin }, P}$ for any $P$.


## Another approach

## Definition (Henson, Moore)

Suppose that $(X, \mathcal{U})$ is a uniform space. Then $a \in X^{*}$ is $\mathcal{U}$-finite if, for every $A \in \mathcal{U}$, there is a sequence $a_{0}, \ldots, a_{n} \in X^{*}$ such that $a_{0}=a$, $a_{n} \in X$, and $\left(a_{i}, a_{i+1}\right) \in A^{*}$ for each $i<n$. Let $X_{\text {fin }}^{\mathcal{U}}$ denote the $\mathcal{U}$-finite points.

It is easy to see that $X_{\text {fin }}^{U} \subseteq X_{\text {fin }, P}$ for any $P$.

## Lemma (G.)

Suppose that $G$ is $U$-locally uniform and that $V \subseteq U$ is a symmetric neighborhood of 1 satisfying $V^{2} \subseteq U$. Then $V_{\text {fin }}^{\mathcal{U}} \cdot V_{\text {fin }}^{\mathcal{U}} \subseteq U_{\text {fin }}^{\mathcal{U}}$ and $\left(U_{\text {fin }}^{\mathcal{U}}\right)^{-1}=U_{\text {fin }}^{\mathcal{U}}$.

## Another approach (cont'd)

## Corollary

If $G$ is a uniform group, then $G_{\text {fin }}^{u}$ is a subgroup of $G_{\text {fin }}$, yielding a smaller nonstandard hull $\hat{G}^{u}:=G_{\text {fin }}^{u} / \mu_{G} \leq \hat{G}_{P}$.

## Example

If $F$ is a locally convex vector space, then $E_{\text {fin }}=E_{\text {fin }}^{U}=E_{\text {fins }}^{\text {ivs }}$

## Question

Is there a uniform group $G$ such that $\hat{G}^{U}<\hat{G}$ ?

## Question

$X^{\mathcal{U}}=X^{*}$ if and only if every uniformly continuous function $X \rightarrow \mathbb{R}$ is bounded. (Henson) Which groups have this property? (If G satisfies this property and is complete, then every morphism $G \rightarrow \mathbb{R}$ is trivial.)

## Another approach (cont'd)

## Corollary

If $G$ is a uniform group, then $G_{\mathrm{fin}}^{\mathrm{U}}$ is a subgroup of $G_{\mathrm{fin}}$, yielding a smaller nonstandard hull $\hat{G}^{u}:=G_{\text {fin }}^{U} / \mu_{G} \leq \hat{G}_{P}$.

## Example

If $E$ is a locally convex vector space, then $E_{\text {fin }}=E_{\text {fin }}^{U}=E_{\text {fin }}^{\mathrm{tvs}}$.
Question
Is there a uniform group $G$ such that $\hat{G}^{U}<\hat{G}_{p}$ ?

## Question

$X^{\mathcal{U}}=X^{*}$ if and only if every uniformly continuous function $X \rightarrow \mathbb{R}$ is bounded. (Henson) Which groups have this property? (If G satisfies this property and is complete, then every morphism $G \rightarrow \mathbb{R}$ is trivial.)

## Another approach (cont'd)

## Corollary

If $G$ is a uniform group, then $G_{\text {fin }}^{U}$ is a subgroup of $G_{\text {fin }}$, yielding a smaller nonstandard hull $\hat{G}^{u}:=G_{\text {fin }}^{u} / \mu_{G} \leq \hat{G}_{P}$.

## Example

If $E$ is a locally convex vector space, then $E_{\text {fin }}=E_{\text {fin }}^{U}=E_{\text {fin }}^{\text {tvs }}$.

## Question

Is there a uniform group $G$ such that $\hat{G}^{u}<\hat{G}_{P}$ ?

## Question

$X_{\text {fin }}^{\mathcal{U}}=X^{*}$ if and only if every uniformly continuous function $X \rightarrow \mathbb{R}$ is bounded. (Henson) Which groups have this property? (If $G$ satisfies this property and is complete, then every morphism $G \rightarrow \mathbb{R}$ is trivial.)


[^0]:    Proposition (G.)
    $\hat{\lambda} /$ is a rectriction of $U(\hat{A})$ to a symmetric neighborhood of the origin.

