
TWO SMALL NONSTANDARD GROUP-THEORETIC
OBSERVATIONS

ISAAC GOLDBRING

In this note, we make two nonstandard group-theoretic observations. First,
we give a short nonstandard proof of a well-known result in group theory
concerning locally nilpotent groups. Second, we outline a nonstandard way
of viewing the projective limit of an projective family of groups. (We are
unsure if this second observation, in some form, has already been discovered,
although we would not be surprised to find out that it had.)

1. Locally nilpotent groups

Fix a group G. Recall that G is locally nilpotent if every finitely gen-
erated subgroup of G is nilpotent. For a nilpotent group H, let cl(H)
denote the nilpotency class of H. Finally, if G is locally nilpotent, set
d(G) := sup{cl(H) | H ≤ G,H finitely generated} ∈ N ∪ {∞}. We then
have the following well-known result.

Theorem 1.1. If d(G) ∈ N, then G is nilpotent and cl(G) = d(G).

Proof. The main idea is a well-known method in nonstandard analysis, namely
that of hyperfinite approximation. Indeed, we embed G into a hyperfinitely
generated subgroup H of G∗. More precisely, we let Pfg(G) denote the
set of finitely generated subgroups of G. Then for each x ∈ G, we let
Ax := {H ∈ Pfg(G)∗ | x ∈ H}. Since the internally cyclic subgroup of
G∗ generated by x is in Ax, we have that Ax is a nonempty internal set.
Moreover, given any finite subset {x1, . . . , xn} of G, we have that the inter-
nal subgroup of G∗ generated by x1, . . . , xn is in Ax1 ∩ · · · ∩ Axn . Thus, by
saturation, there is H ∈

⋂
xAx. Then H is a hyperfinitely generated internal

subgroup of G∗ containing G as a subgroup. By transfer, we have that H is
internally nilpotent. However, since d(G) ∈ N, we have that H is actually
nilpotent and cl(H) ≤ d(G). Thus, G is nilpotent and cl(G) ≤ cl(H) ≤ d(G).
But since there is a subgroup of G of nilpotency class d(G), we must have
that cl(G) = d(G). �

We should remark that if d(G) = ∞, then the above proof does not work
as we cannot pass from the fact that H is internally nilpotent to the fact
that H is actually nilpotent. In fact, there are examples of locally nilpotent
groups G which are not nilpotent. (Such groups must then necessarily satisfy
d(G) =∞.) An example of such a group is the so-called generalized dihedral
group of Z(2∞), i.e. Z(2∞) oφ Z2, where φ(0) is the identity on Z2 and φ(1)
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is inversion on Z2. (Here, Z(2∞) := {z ∈ C | z2n
= 1 for some n} is the

Prüfer 2-group.) Indeed, setting G := Z(2∞) oφ Z2 and identifying Z(2∞)
with Z(2∞) × {0} ≤ G, we see that [G,G] = Z(2∞) = [Z(2∞), G], whence
the lower central series for G stabilizes at Z(2∞), implying that G is not
nilpotent. However, fix (x1, s1), . . . , (xn, sn) ∈ G. Let H1 be the subgroup
of Z(2∞) generated by x1, . . . , xn. A key property of Z(2∞) is that every
finite subset of it generates a finite 2-group. Thus, H1 oφ Z2 is also a finite
2-group, and hence nilpotent. Since the subgroup H of G generated by
(x1, s1), . . . , (xn, sn) is a subgroup of H1 oφ Z2, we see that H is nilpotent.
Since H is an arbitrary finitely generated subgroup of G, we see that G is
locally nilpotent.

2. Projective limits of groups

Suppose that (I,≤) is a directed set and (Gi, f
j
i ) is a projective family

of groups indexed by I, that is, for each i ∈ I, Gi is a group, and for each
i, j ∈ I with i ≤ j, f ji : Gj → Gi is a homomorphism. The projective limit
of the family is the group

G := lim←−Gi := {(xi) ∈
∏
i∈I

Gi : (∀i ∈ I)(∀j ≥ i)f ji (xj) = xi}.

The projective limit satisfies an appropriate universal mapping property and
it is the unique group (up to a unique isomorphism) satisfying this property.
We now explain how to give a nice nonstandard characterization of this
projective limit. To avoid trivialities, we assume that I has no maximal
(equivalently, maximum) element.

We first describe how to view the above situation in order for the non-
standard framework to apply smoothly. Let H be a group such that Gi is a
subgroup of H for each i ∈ I. Let Sbgrp(H) denote the set of all subgroups
of H and let Φ : I → Sbgrp(H) be defined by Φ(i) := Gi. We consider
the nonstandard extension Φ : I∗ → Sbgrp(H)∗. We can, in the usual way,
identify Sbgrp(H)∗ as the set of internal subgroups of H∗, so in this way,
for each i ∈ I∗, Φ(i) is an internal subgroup of H∗. For i ∈ I∗ \ I, we set
Gi := Φ(i). Also, to encode the homomorphisms f ji , we consider the partial
function Ψ : I×I×H ⇀ H with dom(Ψ) := {(i, j, x) : i ≤ j and x ∈ Φ(j)}
and then for (i, j, x) ∈ dom(Ψ), we define Ψ(i, j, x) := f ji (x). Again, we have
the nonstandard extension Ψ : I∗ × I∗ ×H∗ ⇀ H∗. For any (i, j) ∈ I∗ × I∗
and x ∈ Φ(j), we write f ji (x) for Ψ(i, j, x); observe that this notation does
not clash with the original notation in the situation that i, j ∈ I and x ∈ Gj .

We say that i ∈ I∗ is infinite if j < i for all j ∈ I; we let Iinf denote
the set of infinite elements of I∗. Observe that Iinf 6= ∅. To see this, for
j ∈ I, let Xj := {i ∈ I∗ | j < i}. Observe that Xj is an internal set that is
nonempty by our assumption that I has no maximal element. It follows from
the directedness of I that the family (Xj : j ∈ I) has the finite intersection
property. By saturation, there is i ∈

⋂
j∈J Xj ; such an i is infinite.
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For i ∈ Iinf , let Ki := {x ∈ Gi : (∃j ∈ Iinf)(j ≤ i and f ij(x) = 1)} and
define ρi : Gi → G by ρi(x) = (f ij(x))j∈I . (The fact that ρ(Gi) is a subset
of G is a consequence of transfer.)

Proposition 2.1. For every i ∈ Iinf , ρi is a surjective homomorphism and
Ker(ρi) = Ki. Consequently, Gi/Ki

∼= G.

Proof. It is clear that ρi is a group homomorphism. We first prove that ρi
is surjective. Fix g = (gj)j∈I ∈ G. Considering g : I∗ → H∗, we claim that
ρi(gi) = g. Indeed, (ρi(gi))j = f ij(gi) = gj by transfer.

Now suppose that x ∈ Ki. Then f ij(x) = 1 for some j ∈ Iinf with j ≤ i.
Now fix k ∈ I. Then (ρi(x))k = f ik(x) = f jk(f ij(x)) = f jk(1) = 1. Since k ∈ I
was arbitrary, we see that x ∈ Ker(ρi).

Conversely, suppose that x ∈ Ker(ρi). For k ∈ I, we set

Yk := {j ∈ I∗ : k ≤ j and f ij(x) = 1}.

Since I is directed, we have that (Yk : k ∈ I) has the finite intersection
property. By saturation, there is j ∈

⋂
k∈K Yk; then j ∈ Yinf and f ij(x) = 1,

whence x ∈ Ki. �

Note that the proof of the proposition shows that ρ−1
i ((gj)j∈I) = giKi.

We also know that, for all i, j ∈ Iinf , Gi/Ki
∼= Gj/Kj . We can be more

explicit about the isomorphism witnessing this. From now on, suppose that
f ji is surjective for each i, j ∈ I with i ≤ j. Note then, by transfer, that f ji
is surjective for each i, j ∈ I∗ with i ≤ j.

Lemma 2.2. Suppose that i, j ∈ Iinf and i ≤ j. Then the surjective group
morphism f ji : Gj → Gi/Ki has kernel Kj. Consequently, the map

xKj → f ji (x)Ki : Gj/Kj → Gi/Ki

is an isomorphism.

Proof. First suppose that f ji (x) ∈ Ki. Then there is k ∈ Iinf with k ≤ i such
that f ik(f

j
i (x)) = 1. However, this then implies that f jk(x) = 1, so x ∈ Kj .

Conversely, suppose that x ∈ Kj . Take k ∈ Iinf such that f jk(x) = 1. For
l ∈ I, set Zl := {m ∈ I∗ : m ≤ i and l ≤ m and f jm(x) = 1}. We claim
that (Zl : l ∈ I) has the finite intersection property. Indeed, given l1, . . . , lr,
take m ∈ I with l1, . . . , lr ≤ m. Then m ≤ i and f jm(x) = fkm(f jk(x)) = 1.
Thus, by saturation, there is m ∈

⋂
l∈I Zl. Then m ∈ Iinf , m ≤ i, and

f im(f ji (x)) = f jm(x) = 1. Consequently, f ji (x) ∈ Ki. �

Corollary 2.3. Suppose that i, j ∈ Iinf . Let k ∈ Iinf be such that i, j ≤ k.
Given x ∈ Gi, let gki (x) be any element of Gk such that fki (gki (x)) = x. Then
the map

xKi 7→ fkj (gki (x))Kj : Gi/Ki → Gj/Kj

is an isomorphism.
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We should say that the above goes through with other algebraic objects,
e.g. rings, modules, etc... In all likelihood, this can all be phrased in some
abstract, categorical way.


