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The problem

π1(X )

Suppose that X is a space and p ∈ X .
Recall that π1(X ; p) is the set of (continuous) loops based at p
modulo the relation of two loops being homotopic.
The operation of concatenating loops based at p induces a group
operation on π1(X ; p) (with identity being the homotopy class of
the constant loop at p).
If X is pathconnected, then this group is independent of p and is
denoted by π1(X ), referred to as the fundamental group of X .
The typical example is π1(S1) ∼= Z, where S1 is the unit circle in C.
This construction is functorial: if f : X → Y is continuous, then
there is an induced map f∗ : π1(X )→ π1(Y ) given by
f∗([α]) := [f ◦ α].
X is called simply connected if it is pathconnected and
π1(X ) = {1}.
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The problem

π1(Γ) when Γ is finite

Theorem

Suppose that Γ is a connected, finite graph. Then π1(Γ) is a finitely
generated free group.

Proof.

Let T be a spanning tree of Γ.
Let ~e1, . . . , ~en be oriented chords of T , that is, edges of Γ not in T ,
given a fixed orientation.
Given [α] ∈ π1(Γ), let rα be the reduced word on {e±1

1 , . . . ,e±1
n }

obtained by recording which chords α traverses fully and in which
direction.
The map [α] 7→ rα : π1(Γ)→ Fn is an isomorphism.
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The problem

End compactifications of finite graphs

We now consider infinite, locally finite, connected graphs.
Many results from finite graph theory are plain false for infinite
graphs.
However, by compactifying an infinite graph by adding its “ends,”
one can obtain topological analogues of theorems from finite
graph theory.
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The problem

Ends

Definition

Let X be a metric space and p ∈ X .
1 For x , y ∈ X , we write x ∝n y to indicate that x and y are in the

same path component of X \ B(p; n).
2 For r1, r2 : [0,∞)→ X proper rays with r1(0) = r2(0) = p, we say

end(r1) = end(r2) if and only if:

(∀n ∈ N)(∃m0 ∈ N)(∀m ≥ m0)(r1(m) ∝n r2(m)).

3 Ends(X ) := {end(r) | r a proper ray starting at p}.
4 |X | := X ∪ Ends(X ) is the end compactification of X , topologized

in such a way so that proper rays converge to their ends.
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The problem

The main problem

Question (Diestel/Sprüssel)

Is there a nice combinatorial characterization of the fundamental group
of the end compactification of a locally finite, connected graph in the
spirit of the result in the second slide?
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The problem

An example: the infinite sideways ladder

Consider the loop α beginning at v0, going along the bottom rung
of the ladder to the end at +∞, and then back again along the
bottom rung of the ladder. α is certainly nullhomotopic (i.e.
homotopic to the constant loop at v0).
If we consider the topological spanning tree T for Γ pictured below
in bold with oriented edges ~e1, ~e2, . . ., then the “word” α induces is
(~e1~e2 · · · )_(· · ·←−e2

←−e1).
This word is of order type ω + ω∗ with no consecutive
appearances of −→ei and←−ei . So we cannot combinatorially tell that
this loop is nullhomotopic.
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The problem

Diestel and Sprüssel’s Result

Undaunted by the previous example, Diestel and Sprüssel offered
the following solution to their question.
Let Γ be an infinite, locally finite, connected graph with end
compactification |Γ|. Let T be a topological spanning tree for Γ
with oriented chords X = {~e1, ~e2, . . .}.
Diestel and Sprüssel consider words on X of arbitrary countable
order type (e.g. the order type of Q!) and define a non-wellordered
notion of reduction of words.
If F (X ) denotes the group of reduced words (in the above sense),
Diestel and Sprüssel show that the map [α] 7→ rα : π1(|Γ|)→ F (X )
is a well-defined injective group homomorphism (although this
takes ≥ 15 pages!). They also identify the image.
By considering finite subwords, they construct an injective group
morphism F (X )→ lim←−Fn into an inverse limit of finitely generated
free groups, once again identifying the image. (Algebraic and
easy.)
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The problem

Can nonstandard analysis help?

After seeing my nonstandard treatment on ends, Diestel asked me the
following question:

Question (Diestel)

Can nonstandard analysis make any of this simpler?

Answer (G., Sisto)

Yes!
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The problem

The infinite sideways ladder revisited

Let ν be an infinite natural number. We can then consider the following
hyperfinite extension of Γ:

Our loop α from before “clearly” induces the hyperfinite word
−→e1
−→e2 · · ·

−→eν
←−eν · · ·

←−e2
←−e1,

which “clearly” internally reduces to the empty word, exhibiting that α is
nullhomotopic.

In this way, we get an injective group morphism π1(|Γ|) ↪→ π1(Γν),
where π1(Γν) is the internal fundamental group of Γν , which is a
hyperfinitely generated internally free group on ν generators.
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Nonstandard analysis

NSA in a nutshell

Every set X gets enlarged, in a functorial fashion, to a set X ∗, the
nonstandard extension of X .
X ∗ “logically behaves” like X (Transfer Principle), but contains new
“ideal” elements, e.g. R∗ contains infinitesimal and infinite
numbers.
In a natural way, P(X )∗ embeds into P(X ∗). The subsets of P(X ∗)
that belong to P(X )∗ are called the internal subsets of X ∗;
noninternal subsets of X ∗ are called external.
The similarity in logical behavior applies only to internal subsets of
X ∗. For example, internal subsets of R∗ that are bounded above
have suprema; it follows that the set of infinitesimal numbers is
external.

Isaac Goldbring (UIC) π1(|Γ|): a hyperfinite approach Penn October 16, 2012 13 / 32



Nonstandard analysis

The ultraproduct approach

Suppose that U is a nonprincipal ultrafilter on N, that is, U is a
{0,1}-valued measure on P(N) such that finite sets get measure
0.
For f ,g : N→ X , write f ∼U g to mean f = g a.e.
Set XU := XN/ ∼U , the ultrapower of X with respect to U .
This construction is easily seen to be functorial and the fact that
XU behaves “logically” like X is known to model theorists as Łos’
theorem.
In this setting, A ⊆ XU is internal if there are An ⊆ X such that
A =

∏
U An := (

∏
n An)/ ∼U .

N := [(1,2,3, . . .)]U ∈ N∗ is a positive infinite number whose
reciprocal 1

N = [(1, 1
2 ,

1
3 , . . .] ∈ R∗ is a positive infinitesimal.

If A :=
∏
U An with each An finite, then we say that A is hyperfinite

with internal cardinality [(|An|)] ∈ N∗.
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Nonstandard analysis

Nonstandard metric spaces

If (X ,d) is a metric space, then (X ∗,d) is almost a metric space
except for the fact that the metric takes values in R∗ rather than in
R.
There are two important subsets of X ∗ to consider:

Xns := {a ∈ X ∗ | there is b ∈ X with d(a,b) infinitesimal}.
Xfin := {a ∈ X ∗ | there is b ∈ X with d(a,b) finite}.

Clearly Xns ⊆ Xfin with equality holding if and only if X is a proper
metric space, that is, closed balls are compact.
If X is proper, then a ray r : [0,∞)→ X is proper if and only if
r(σ) ∈ Xinf for all infinite elements σ of R∗.
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Nonstandard analysis

The nonstandard approach to ends

Suppose that (X ,d) is a proper, geodesic metric space and p ∈ X .
For x , y ∈ X ∗, write x ∝ y to mean there is α ∈ C([0,1],X )∗ (an
internal path in X ∗) such that α(0) = x , α(1) = y , and
α(t) ∈ Xinf := X ∗ \ Xfin for all t ∈ [0,1]∗.
“x and y are in the same path component at infinity.”

Theorem (G.)

1 end(r1) = end(r2) if and only if for all (equiv. for some) σ, τ ∈ R>0
inf ,

r1(σ) ∝ r2(τ).
2 Set IPC(X ) := {[x ] | x ∈ Xinf}, where [x ] denotes the equivalence

class of x with respect to ∝. Fix σ ∈ R>0
inf . Then the map

end(r) 7→ [r(σ)] : Ends(X )→ IPC(X ) is a bijection.
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The Main Theorem

Collapsing graphs

From now on, Γ is an infinite, locally finite, connected graph.
Let θn : Γ→ Γn be the map which collapses path components of
Γ \ B(p; n) to points. Note Γn is a finite graph.
It is straightforward to check that θn extends continuously to
θn : |Γ| → Γn.
Set Γhyp :=

∏
U Γn, a hyperfinite graph.

Γhyp arises from the internal map θ : Γ∗ → Γhyp arising from
collapsing internal path components of Γ∗ \ B(p; N) to points,
where N := [(1,2,3, . . .)] ∈ N∗ \ N.
θ extends to an internally continuous θ : |Γ∗| → Γhyp, where |Γ∗|
denotes the internal end compactification of Γ∗.
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The Main Theorem

Collapsing graphs (cont’d)

θ : |Γ∗| → Γhyp.
Digesting the definitions, one sees that |Γ∗| = |Γ|∗.
By the Transfer Principle applied to the functoriality of the
fundamental group, we get an internal map
Θ : π1(|Γ|∗)→ π1(Γhyp), where the π1’s here denote internal
fundamental groups.
More digesting of notation reveals π1(|Γ|∗) = (π1(|Γ|))∗, so π1(Γ) is
a subgroup of π1(|Γ|∗).

Theorem (G., Sisto)

Θ � π1(|Γ|) : π1(|Γ|)→ π1(Γhyp) is injective.
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The Main Theorem

About the theorem

Theorem (G., Sisto)

Θ � π1(|Γ|) : π1(|Γ|)→ π1(Γhyp) is injective.

Remarks

1 Θ is generally not injective.
2 The result does not imply that π1(|Γ|) is free. (This happens if and

only if every end is contractible.) Indeed, internally free groups
(e.g. π1(Γhyp)) need not be free. For example, Z∗ is internally free
on one generator, while, for infinite M,N ∈ N∗ with M

N infinite, we
have the map (a,b) 7→ aM + bN : Z2 → Z∗ is injective. If Z∗ were
free, then Z2 would be free.

3 π1(|Γ|) has the same universal theory as the theory of free groups.
(If π1(|Γ|) were finitely generated, we would say it is a limit group.)
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The Main Theorem

Universal covers

Given a topological space X , a cover of X is a topological space C
and a surjective, continuous map p : C → X such that, for every
x ∈ X , there is an open neighborhood U of x such that p−1(U) is
a disjoint union of open sets in C, each of which is mapped
homeomorphically onto U by p.
A universal cover of X is a cover of X whose associated
topological space is simply connected. “Nice” spaces have
universal covers.
For example, the universal cover of S1 is R.
If G is a finite graph, its universal cover is a tree.
If p : C → X is a cover of X and γ is a path in X , then for every
c ∈ p−1(γ(0)), there is a unique path in C lying over γ starting at
c. If p is the universal cover of X and γ is a loop, then this unique
path in C is also a loop.
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The Main Theorem

About the proof

Theorem (G., Sisto)

Θ � π1(|Γ|) : π1(|Γ|)→ π1(Γhyp) is injective.

Idea of Proof

Suppose θ(α) is internally nullhomotopic.

Since Γhyp is hyperfinite, its internal universal cover Γ̃hyp is an
internal tree. This passage to universal covering tree is not
possible in the standard approach!
θ(α) lifts to an internal loop in Γ̃hyp.

Using nice geodesic paths in Γ̃hyp, we can project back onto Γhyp
to construct a homotopy witnessing that α is nullhomotopic.
We do not need to consider topological spanning trees in Γ, an
added bonus since their existence is nontrivial.
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The Main Theorem

Connection with the standard result

With more effort, we can completely recover the Diestel-Sprüssel
result.
However, we can easily recover the embedding of π1(|Γ|) into an
inverse limit of f.g. free groups.
The maps θn : |Γ| → Γn yield a homomorphism

Ψ : π1(|Γ|)→ lim←−π1(Γn).

Define Φ : lim←−π1(Γn)→
∏
U π1(Γn) = π1(Γhyp) by Φ((xn)) := [(xn)].

Check that Θ � π1(|Γ|) = Φ ◦Ψ. Since Θ � π1(|Γ|) is injective, so is
Ψ.
As a result, we see that π1(|Γ|) is ω-residually free, a property
known to be equivalent to being a limit group for finitely generated
groups.
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An application to homology

The first homology group

Definition

1 If G is a group, its first homology group is the group
H1(G) := G/[G,G].

2 If X is a pathconnected space, its first singular homology group is
H1(X ) := H1(π1(X )).

For finite graphs, the first singular homology group coincides with
a familiar combinatorial object, the so-called cycle space C(Γ).
For infinite graphs, Diestel and Sprüssel devised an ad hoc
homology theory for |Γ|, the topological cycle space Ctop(Γ).
They wondered if the topological cycle space coincides with the
first singular homology.
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An application to homology

The topological cycle space

Set ~E(Γ) := {ϕ : Eor(Γ)→ Z | ϕ(~e) = −ϕ(
←−e )}.

If (ϕn)n∈N ⊆ ~E(Γ) is such that, for all edges e, ϕn(e) 6= 0 for finitely
many n, then we may form the thin sum of (ϕn),

∑
n ϕn ∈ ~E(Γ).

Given a circle α in |Γ|, get ϕα ∈ ~E(Γ) by setting ϕα(~e) = 1 if α
traverses ~e, −1 if it traverses←−e , and 0 otherwise. Call ϕα an
oriented circuit.
Ctop(Γ) is the subgroup of ~E(Γ) obtained by taking thin sums of
oriented circuits.

Theorem (Diestel-Sprüssel)

There is a surjective group homomorphism H1(|Γ|)→ Ctop(Γ) such
that:

the homomorphism is an isomorphism when Γ is finite;
if α is a loop in |Γ|, then the image of [α] is 0 in Ctop(Γ) if and only if
α traverse each edge the same number of times in each direction.
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An application to homology

Two different homology theories

Theorem (Diestel/Sprüssel)

The loop α depicted below is trivial in Ctop(Γ) but not in H1(|Γ|).
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An application to homology

Why is α not nullhomologous?

A finite version of α would trace the word

−→e1 · · ·
−→en
←−e1 · · ·

←−en ∈ [π1(Γ), π1(Γ)],

whence the finite version of α would be nullhomologous.
Diestel and Sprüssel give a topological proof that the finite version
of the loop α is nullhomologous. They then remark “But we cannot
imitate this proof for α and our infinite ladder, because homology
classes in H1(|Γ|) are still finite chains: we cannot add infinitely
many boundaries to subdivide α infinitely often.” (I.e. Wouldn’t it
be great if nonstandard analysis existed?)
Instead, Diestel and Sprüssel use their analysis of the
fundamental group to attach a complicated invariant to loops
which vanish on nullhomologous loops. They then show that the
invariant for α is nonzero.
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An application to homology

A simple lemma

Recall our maps θ : Γ→ Γhyp and Θ : π1(|Γ|)∗ → π1(Γhyp).

Lemma

If the loop α is null-homologous, then θ(α) has finite commutator
length as an element of π1(Γhyp).

Proof.

Let g ∈ π1(|Γ|) be the element represented by α and let f : G→ H1(G)
be the natural map. If f (g) = 0, then we can write g as the product of,
say, n commutators. As Θ is a group homomorphism, we have that
Θ(g) can be written as a product of n commutators as well.
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An application to homology

A simple proof that α is not nullhomologous

Fact (Goldstein-Turner; G.-Sisto)

If e1, . . . ,en generate a free group, then e1 · · · ene−1
1 · · · e

−1
n has

commutator length bn
2c.

By transfer, θ(α) induces the word e1 · · · eνe−1
1 · · · e

−1
ν in Γhyp.

By transfer of the above fact, θ(α) has commutator length bν2c > N.
By the previous lemma, α is not nullhomologous.
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An application to homology

Remarks about homology

We have seen that θ(α) internally nullhomotopic implies α
nullhomotopic.
The preceding example shows that θ(α) internally nullhomologous
does not necessarily imply α nullhomologous.
In fact, one can check that θ(α) is internally nullhomologous if and
only if α is trivial in Ctop(Γ). So, in some sense, their ad hoc
homology theory is really the internal version of the ordinary
homology theory.
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An application to homology
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