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The problem

m1(X)

m Suppose that X is a space and p € X.

m Recall that 1(X; p) is the set of (continuous) loops based at p
modulo the relation of two loops being homotopic.

m The operation of concatenating loops based at p induces a group
operation on 71(X; p) (with identity being the homotopy class of
the constant loop at p).

m If X is pathconnected, then this group is independent of p and is
denoted by 71(X), referred to as the fundamental group of X.

m The typical example is 71(S') = Z, where S' is the unit circle in C.

m This construction is functorial: if f : X — Y is continuous, then
there is an induced map f, : m1(X) — m1(Y) given by
£(la]) = [foal.

m X is called simply connected if it is pathconnected and

m1(X) = {1}.
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The problem

m1(I") when T is finite

Suppose that T is a connected, finite graph. Then w1 (') is a finitely
generated free group.

m Let T be a spanning tree of T".

m Let é4,..., &, be oriented chords of T, that is, edges of I' notin T,
given a fixed orientation.

m Given [a] € 71(T), let r, be the reduced word on {ei ', ..., ef'}
obtained by recording which chords « traverses fully and in which
direction.

m The map [a] — r, : m1(") — Fp is an isomorphism.
[
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End compactifications of finite graphs

m We now consider infinite, locally finite, connected graphs.

m Many results from finite graph theory are plain false for infinite
graphs.

m However, by compactifying an infinite graph by adding its “ends,
one can obtain topological analogues of theorems from finite
graph theory.
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The problem
Ends

Let X be a metric space and p € X.

For x, y € X, we write x «, y to indicate that x and y are in the
same path component of X \ B(p; n).

For ri,rz : [0,00) — X proper rays with r1(0) = ro(0) = p, we say
end(r1) = end(r2) if and only if:

(Yn € N)(3mgy € N)(Vm > mg)(ri(m) o, r2(m)).

Ends(X) := {end(r) | r a proper ray starting at p}.
|X| := X UEnds(X) is the end compactification of X, topologized
in such a way so that proper rays converge to their ends.
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The problem
The main problem

Question (Diestel/Sprissel)

Is there a nice combinatorial characterization of the fundamental group
of the end compactification of a locally finite, connected graph in the
spirit of the result in the second slide?
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An example: the infinite sideways ladder

m Consider the loop « beginning at vy, going along the bottom rung
of the ladder to the end at +oc, and then back again along the
bottom rung of the ladder. « is certainly nullhomotopic (i.e.
homotopic to the constant loop at vp).

T = ® |00
€1 €2 €3
Vo U1 U2
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m Consider the loop « beginning at vy, going along the bottom rung
of the ladder to the end at +oc, and then back again along the
bottom rung of the ladder. « is certainly nullhomotopic (i.e.
homotopic to the constant loop at vp).

m If we consider the topological spanning tree T for I pictured below
in bold with oriented edges é;, &, . . ., then the “word” o induces is
(8182--) (-~ &28).

T = ® |00
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An example: the infinite sideways ladder

m Consider the loop « beginning at vy, going along the bottom rung
of the ladder to the end at +oc, and then back again along the
bottom rung of the ladder. « is certainly nullhomotopic (i.e.
homotopic to the constant loop at vp).

m If we consider the topological spanning tree T for I pictured below
in bold with oriented edges é;, &, . . ., then the “word” o induces is
(8182--) (-~ &28).

m This word is of order type w + w* with no consecutive
appearances of e; and &;. So we cannot combinatorially tell that
this loop is nullhomotopic.

T = ® |00
€1 €2 €3
Vo V1 V2
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The problem
Diestel and Spriissel’s Result

m Undaunted by the previous example, Diestel and Sprissel offered
the following solution to their question.
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Diestel and Spriissel’s Result

m Undaunted by the previous example, Diestel and Sprissel offered
the following solution to their question.

m Let I be an infinite, locally finite, connected graph with end
compactification |I'|. Let T be a topological spanning tree for I
with oriented chords X = {éy, €z, ...}
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The problem
Diestel and Spriissel’s Result

m Undaunted by the previous example, Diestel and Sprissel offered
the following solution to their question.

m Let I be an infinite, locally finite, connected graph with end
compactification |I'|. Let T be a topological spanning tree for I
with oriented chords X = {éy, €z, ...}

m Diestel and Sprissel consider words on X of arbitrary countable
order type (e.g. the order type of Q!) and define a non-wellordered
notion of reduction of words.
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The problem
Diestel and Spriissel’s Result

m Undaunted by the previous example, Diestel and Sprissel offered
the following solution to their question.

m Let I be an infinite, locally finite, connected graph with end
compactification |I'|. Let T be a topological spanning tree for I
with oriented chords X = {é;, &»,...}.

m Diestel and Sprissel consider words on X of arbitrary countable
order type (e.g. the order type of Q!) and define a non-wellordered
notion of reduction of words.

m If F(X) denotes the group of reduced words (in the above sense),
Diestel and Sprussel show that the map [a] — r, : 7 (|[]) — F(X)
is a well-defined injective group homomorphism (although this
takes > 15 pages!). They also identify the image.
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The problem
Diestel and Spriissel’s Result

m Undaunted by the previous example, Diestel and Sprissel offered
the following solution to their question.

m Let I be an infinite, locally finite, connected graph with end
compactification |I'|. Let T be a topological spanning tree for I
with oriented chords X = {é;, &»,...}.

m Diestel and Sprissel consider words on X of arbitrary countable
order type (e.g. the order type of Q!) and define a non-wellordered
notion of reduction of words.

m If F(X) denotes the group of reduced words (in the above sense),
Diestel and Sprussel show that the map [a] — r, : 7 (|[]) — F(X)
is a well-defined injective group homomorphism (although this
takes > 15 pages!). They also identify the image.

m By considering finite subwords, they construct an injective group
morphism F(X) — lim F, into an inverse limit of finitely generated
free groups, once again identifying the image. (Algebraic and
easy.)
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The problem
Can nonstandard analysis help?

After seeing my nonstandard treatment on ends, Diestel asked me the
following question:

Question (Diestel)

Can nonstandard analysis make any of this simpler?

Answer (G., Sisto)

Yes!
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The infinite sideways ladder revisited

Let v be an infinite natural number. We can then consider the following
hyperfinite extension of I':

r, =
el €9 es ) €v—1| €y
Vo U1 V2 Vp—2 Up—1 Uy
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The infinite sideways ladder revisited

Let v be an infinite natural number. We can then consider the following
hyperfinite extension of I':

', =

el €9 es Ev—1| €y,

Vo U1 V2 UVpy—2 Up—1 Uy

Our loop « from before “clearly” induces the hyperfinite word
—— —— ——
€162--- 6,6, - €264,

which “clearly” internally reduces to the empty word, exhibiting that « is
nullhomotopic.
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The infinite sideways ladder revisited

Let v be an infinite natural number. We can then consider the following
hyperfinite extension of I':

', =

el €9 es Ev—1| €y,

Vo U1 V2 UVpy—2 Up—1 Uy

Our loop « from before “clearly” induces the hyperfinite word
—— —— ——
€162--- 6,6, - €264,

which “clearly” internally reduces to the empty word, exhibiting that « is
nullhomotopic.

In this way, we get an injective group morphism 71 (|I'|) — m1(I',),
where 71(I",) is the internal fundamental group of T',,, which is a
hyperfinitely generated internally free group on v generators.
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Nonstandard analysis
NSA in a nutshell

m Every set X gets enlarged, in a functorial fashion, to a set X*, the
nonstandard extension of X.

m X* “logically behaves” like X (Transfer Principle), but contains new
“‘ideal” elements, e.g. R* contains infinitesimal and infinite
numbers.

m In a natural way, P(X)* embeds into P(X*). The subsets of P(X*)
that belong to P(X)* are called the internal subsets of X*;
noninternal subsets of X* are called external.

m The similarity in logical behavior applies only to internal subsets of
X*. For example, internal subsets of R* that are bounded above
have suprema; it follows that the set of infinitesimal numbers is
external.
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Nonstandard analysis
The ultraproduct approach

m Suppose that U is a nonprincipal ultrafilter on N, that is, U is a
{0, 1}-valued measure on P(N) such that finite sets get measure
0.

m Forf,g:N— X, write f ~y gtomean f = g a.e.
m Set XY := X"/ ~y, the ultrapower of X with respect to U.

m This construction is easily seen to be functorial and the fact that
XY behaves “logically” like X is known to model theorists as £os’
theorem.

m In this setting, A C X" is internal if there are A, C X such that
A =TIy An = (I1,An)/ ~u-

m N:=[(1,2,3,...)y € N* is a positive infinite number whose
reciprocal 4 = [(1, 3, 3,...] € R* is a positive infinitesimal.

m If A:=[],, An with each A, finite, then we say that A is hyperfinite
with internal cardinality [(|An])] € N*.
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Nonstandard analysis

Nonstandard metric spaces

m If (X, d) is a metric space, then (X*, d) is almost a metric space
except for the fact that the metric takes values in R* rather than in
R.

m There are two important subsets of X* to consider:

B X, = {ae€ X*| thereis b € X with d(a, b) infinitesimal}.
B Xi, := {a€ X* | thereis b € X with d(a, b) finite}.

m Clearly Xns C Xin, with equality holding if and only if X is a proper
metric space, that is, closed balls are compact.

m If X is proper, then aray r : [0,00) — X is proper if and only if
r(o) € Xint for all infinite elements o of R*.
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Nonstandard analysis

The nonstandard approach to ends

m Suppose that (X, d) is a proper, geodesic metric space and p € X.

m For x,y € X*, write x o< y to mean there is « € C([0, 1], X)* (an
internal path in X*) such that «(0) = x, o(1) = y, and
a(t) € Xins := X* \ X, for all t € [0, 1]*.
“x and y are in the same path component at infinity.”
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Nonstandard analysis

The nonstandard approach to ends

m Suppose that (X, d) is a proper, geodesic metric space and p € X.

m For x,y € X*, write x o< y to mean there is « € C([0, 1], X)* (an
internal path in X*) such that «(0) = x, o(1) = y, and
a(t) € Xins := X* \ X, for all t € [0, 1]*.
“x and y are in the same path component at infinity.”

Theorem (G.)

end(ry) = end(r.) if and only if for all (equiv. for some) o, T € R;?,
ri(o) o< ra(7).

Set IPC(X) := {[x] | x € Xint}, where [x] denotes the equivalence
class of x with respect to . Fix o € R;fo. Then the map

end(r) — [r(o)] : Ends(X) — IPC(X) is a bijection.

Isaac Goldbring (UIC) w1 (|[]): a hyperfinite approach Penn October 16, 2012 16/32



The Main Theorem

The Main Theorem

Isaac Goldbring (UIC) hyperfinite approach Penn October 16, 2012 17/32



The Main Theorem

Collapsing graphs

m From now on, I is an infinite, locally finite, connected graph.
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m From now on, I is an infinite, locally finite, connected graph.

m Letd,: T — I, be the map which collapses path components of
I\ B(p; n) to points. Note I, is a finite graph.
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The Main Theorem
Collapsing graphs

m From now on, I is an infinite, locally finite, connected graph.

m Letd,: T — I, be the map which collapses path components of
I\ B(p; n) to points. Note I, is a finite graph.

m |t is straightforward to check that 6, extends continuously to
Hn . ||_‘ — rn.
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The Main Theorem
Collapsing graphs

m From now on, I is an infinite, locally finite, connected graph.

m Letd,: T — I, be the map which collapses path components of
I\ B(p; n) to points. Note I, is a finite graph.

m |t is straightforward to check that 6, extends continuously to
Hn . ||_‘ — rn.

m Set Ihyp := [, T, @ hyperfinite graph.
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The Main Theorem
Collapsing graphs

From now on, I is an infinite, locally finite, connected graph.

Let 0, : I — ', be the map which collapses path components of
I\ B(p; n) to points. Note I, is a finite graph.

It is straightforward to check that 6, extends continuously to
On:|T| — Th.

Set Thyp == [1,, Tn, @ hyperfinite graph.

Myp arises from the internal map 6 : ' — Iy, arising from

collapsing internal path components of '\ B(p; N) to points,
where N :=[(1,2,3,...)] e N*\ N.
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The Main Theorem
Collapsing graphs

m From now on, I is an infinite, locally finite, connected graph.

m Letd,: T — I, be the map which collapses path components of
I\ B(p; n) to points. Note I, is a finite graph.

m |t is straightforward to check that 6, extends continuously to
On:|T| — Th.

m Set Ihyp := [, T, @ hyperfinite graph.

m [y, arises from the internal map 6 : ' — Ty, arising from
collapsing internal path components of '\ B(p; N) to points,
where N :=[(1,2,3,...)] e N*\ N.

m ¢ extends to an internally continuous 6 : || — T'nyp, Where ||
denotes the internal end compactification of I'*.
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The Main Theorem

Collapsing graphs (cont'd)
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The Main Theorem

Collapsing graphs (cont'd)

m Digesting the definitions, one sees that [*| = |I'|*.
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The Main Theorem

Collapsing graphs (cont'd)

m Digesting the definitions, one sees that [*| = |I'|*.

m By the Transfer Principle applied to the functoriality of the
fundamental group, we get an internal map

© : m(|T*) — m1(Mhyp), Where the m4’s here denote internal
fundamental groups.
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m By the Transfer Principle applied to the functoriality of the
fundamental group, we get an internal map
© : m(|T*) — m1(Mhyp), Where the m4’s here denote internal
fundamental groups.

m More digesting of notation reveals 71 (|I'|*) = (71(|T']))*, so m(I') is
a subgroup of 71 (|I'|*).
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The Main Theorem

Collapsing graphs (cont'd)

m Digesting the definitions, one sees that [*| = |I'|*.

m By the Transfer Principle applied to the functoriality of the
fundamental group, we get an internal map
© : m(|T*) — m1(Mhyp), Where the m4’s here denote internal
fundamental groups.

m More digesting of notation reveals 71 (|I'|*) = (71(|T']))*, so m(I') is
a subgroup of 71 (|I'|*).

Theorem (G., Sisto)

© [ m(|F]) : m(IF]) — m1(Thyp) is injective.
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The Main Theorem
About the theorem

Theorem (G., Sisto)

(
© [ m(|F]) : m(IF]) — 71 (Thyp) is injective.

© is generally not injective.
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The Main Theorem
About the theorem

Theorem (G., Sisto)

© [ m(|F]) : m(IF]) — 71 (Thyp) is injective.

© is generally not injective.

The result does not imply that 71 (|I'|) is free. (This happens if and
only if every end is contractible.) Indeed, internally free groups
(e.9. m1(Mnyp)) Need not be free. For example, Z* is internally free
on one generator, while, for infinite M, N € N* with ¥ infinite, we
have the map (a, b) — aM + bN : Z? — Z* is injective. If Z* were
free, then Z2 would be free.
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The Main Theorem
About the theorem

Theorem (G., Sisto)

© [ m(|F]) : m(IF]) — 71 (Thyp) is injective.

© is generally not injective.

The result does not imply that 71 (|I'|) is free. (This happens if and
only if every end is contractible.) Indeed, internally free groups
(e.9. m1(Mnyp)) Need not be free. For example, Z* is internally free
on one generator, while, for infinite M, N € N* with ¥ infinite, we
have the map (a, b) — aM + bN : Z? — Z* is injective. If Z* were
free, then Z2 would be free.

m1(|T|) has the same universal theory as the theory of free groups.
(If 71 (|T']) were finitely generated, we would say it is a limit group.)
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The Main Theorem
Universal covers

m Given a topological space X, a cover of X is a topological space C
and a surjective, continuous map p : C — X such that, for every
x € X, there is an open neighborhood U of x such that p~1(U) is
a disjoint union of open sets in C, each of which is mapped
homeomorphically onto U by p.
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m Given a topological space X, a cover of X is a topological space C
and a surjective, continuous map p : C — X such that, for every
x € X, there is an open neighborhood U of x such that p~1(U) is
a disjoint union of open sets in C, each of which is mapped
homeomorphically onto U by p.

m A universal cover of X is a cover of X whose associated
topological space is simply connected. “Nice” spaces have
universal covers.
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a disjoint union of open sets in C, each of which is mapped
homeomorphically onto U by p.

m A universal cover of X is a cover of X whose associated
topological space is simply connected. “Nice” spaces have
universal covers.

m For example, the universal cover of S' is R.
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The Main Theorem
Universal covers

m Given a topological space X, a cover of X is a topological space C
and a surjective, continuous map p : C — X such that, for every
x € X, there is an open neighborhood U of x such that p~1(U) is
a disjoint union of open sets in C, each of which is mapped
homeomorphically onto U by p.

m A universal cover of X is a cover of X whose associated
topological space is simply connected. “Nice” spaces have
universal covers.

m For example, the universal cover of S' is R.
m If Gis a finite graph, its universal cover is a tree.
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The Main Theorem
Universal covers

m Given a topological space X, a cover of X is a topological space C
and a surjective, continuous map p : C — X such that, for every
x € X, there is an open neighborhood U of x such that p~1(U) is
a disjoint union of open sets in C, each of which is mapped
homeomorphically onto U by p.

m A universal cover of X is a cover of X whose associated
topological space is simply connected. “Nice” spaces have
universal covers.

m For example, the universal cover of S' is R.
m If Gis a finite graph, its universal cover is a tree.

m Ifp: C— Xisacoverof X and ~ is a path in X, then for every
c € p~'(v(0)), there is a unique path in C lying over ~ starting at
C.
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The Main Theorem
Universal covers

m Given a topological space X, a cover of X is a topological space C
and a surjective, continuous map p : C — X such that, for every
x € X, there is an open neighborhood U of x such that p~1(U) is
a disjoint union of open sets in C, each of which is mapped
homeomorphically onto U by p.

m A universal cover of X is a cover of X whose associated
topological space is simply connected. “Nice” spaces have
universal covers.

m For example, the universal cover of S' is R.

m If Gis afinite graph, its universal cover is a tree.

m Ifp: C— Xisacoverof X and ~ is a path in X, then for every
c € p~'(v(0)), there is a unique path in C lying over ~ starting at
c. If pis the universal cover of X and ~ is a loop, then this unique
path in C is also a loop.
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About the proof

Theorem (G., Sisto)

F(IF]) s i (IT]) — 71 (Thyp) is injective.

Idea of Proof

m Suppose 0(«) is internally nullhomotopic.

m Since My, is hyperfinite, its internal universal cover Iy, is an
internal tree. This passage to universal covering tree is not
possible in the standard approach!

m 0(a) lifts to an internal loop in Fpyp.

m Using nice geodesic paths in FAh;), we can project back onto Iy
to construct a homotopy witnessing that « is nullhomotopic.

m We do not need to consider topological spanning trees in ', an
added bonus since their existence is nontrivial.
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The Main Theorem

Connection with the standard result

m With more effort, we can completely recover the Diestel-Sprissel
result.

m However, we can easily recover the embedding of 7{(|'|) into an
inverse limit of f.g. free groups.

m The maps 0, : || — I, yield a homomorphism
Vm(|F]) — |<i£’17r1(rn).

m Define & : limmy(Ip) — [T, m1(Tn) = ™1 (Thyp) bY ®((Xn)) = [(Xn)]-

m Check that © | 71(|[]) = ® o W. Since © | m(|'|) is injective, so is
v,

m As aresult, we see that 71 (|l'|) is w-residually free, a property
known to be equivalent to being a limit group for finitely generated
groups.
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An application to homology

An application to homology
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An application to homology

The first homology group

If G is a group, its first homology group is the group
Hi(G) = G/[G, G].

If X is a pathconnected space, its first singular homology group is
H1 (X) = H1 (7T1 (X))
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An application to homology

The first homology group

If G is a group, its first homology group is the group
Hi(G) = G/[G, G].

If X is a pathconnected space, its first singular homology group is
H1 (X) = H1 (7T1 (X))

m For finite graphs, the first singular homology group coincides with
a familiar combinatorial object, the so-called cycle space C(I').

m For infinite graphs, Diestel and Sprissel devised an ad hoc
homology theory for ||, the topological cycle space C'°P(T).

m They wondered if the topological cycle space coincides with the
first singular homology.
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An application to homology
The topological cycle space

mSet&(N):={p: EY() —Z| (&) = —p(e)}
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An application to homology
The topological cycle space

m Set£(N) == {p: E%(N) - Z | p(€) = —p(e)}.
m If (on)nen € E(T) is such that, for all edges e, pn(e) # 0 for finitely

many n, then we may form the thin sum of (¢n), >, ¢n € .
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An application to homology
The topological cycle space

mSet&(N):={p: EY() —Z| (&) = —p(e)}

B If (¢n)nen C E(T) is such that, for all edges e, pn(e) # 0 for finitely
many n, then we may form the thin sum of (¢n), >, ¢n € .

m Given a circle o in [T, get o, € £(T) by setting ¢, (8) = 1 if a
traverses &, —1 if it traverses ‘e, and 0 otherwise. Call ¢, an
oriented circuit.
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An application to homology
The topological cycle space

mSet&(N):={p: EY() —Z| (&) = —p(e)}

B If (¢n)nen C E(T) is such that, for all edges e, pn(e) # 0 for finitely
many n, then we may form the thin sum of (¢n), >, ¢n € .

m Given a circle o in [T, get ¢, € £(T) by setting ¢, (8) = 1 if o
traverses &, —1 if it traverses ‘e, and 0 otherwise. Call ¢, an
oriented circuit.

m C'°P(I") is the subgroup of £(T') obtained by taking thin sums of
oriented circuits.

Theorem (Diestel-Sprtissel)
There is a surjective group homomorphism H;(|F|) — C'P(I') such
that:
m the homomorphism is an isomorphism when T is finite;
m ifa is aloop in |T|, then the image of [a] is 0 in C'°P(T) if and only if
« traverse each edge the same number of times in each direction.
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An application to homology

Two different homology theories

Theorem (Diestel/Sprissel)

The loop o depicted below is trivial in C'°P(T") but not in Hy(|T]).

e 3 ___
! - \\
| N N
l EEE R A Al = Gl & Gl & il & b \
r i i i i i I I
|F| = 1] 2 1N 1 W 1 W 1N 1 W] I |
* I 1K 1K 1K 1K 1K I |
e — —_ —— — ] —— — ] —— — ] —— — ] —— — ] . /
vg €1 _ €y e ____________ T > 1
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An application to homology

Why is « not nullhomologous?

m A finite version of o would trace the word
e1---eneéy - ep € [m(I),m (I,

whence the finite version of o would be nullhomologous.
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Why is « not nullhomologous?

m A finite version of o would trace the word
e1---eneéy - ep € [m(I),m (I,

whence the finite version of o would be nullhomologous.

m Diestel and Sprissel give a topological proof that the finite version
of the loop « is nullhomologous. They then remark “But we cannot
imitate this proof for o and our infinite ladder, because homology
classes in H;(|l'|) are still finite chains: we cannot add infinitely
many boundaries to subdivide « infinitely often.”
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An application to homology

Why is « not nullhomologous?

m A finite version of o would trace the word
e1---eneéy - ep € [m(I),m (I,

whence the finite version of o would be nullhomologous.

m Diestel and Sprissel give a topological proof that the finite version
of the loop « is nullhomologous. They then remark “But we cannot
imitate this proof for o and our infinite ladder, because homology
classes in H;(|l'|) are still finite chains: we cannot add infinitely
many boundaries to subdivide « infinitely often.” (l.e. Wouldn't it
be great if nonstandard analysis existed?)

m Instead, Diestel and Sprissel use their analysis of the
fundamental group to attach a complicated invariant to loops

which vanish on nullhomologous loops. They then show that the
invariant for « is nonzero.
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An application to homology
A simple lemma

Recall our maps 6 : I — Thyp and © : 7y (|T])* — m1(Thyp)-

Lemma

If the loop « is null-homologous, then 6(«) has finite commutator
length as an element of 1 ([hyp).

Let g € m1(|T'|) be the element represented by « and let f : G — H;(G)
be the natural map. If f(g) = 0, then we can write g as the product of,
say, n commutators. As © is a group homomorphism, we have that
©(g) can be written as a product of n commutators as well. O
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An application to homology

A simple proof that « is not nullhomologous

Fact (Goldstein-Turner; G.-Sisto)

If e1,..., en generate a free group, then e; ---e,e; ' - e, has
commutator length | Z].

m By transfer, 6(a) induces the word e; --- e, " -~ &, " in Thyp.

m By transfer of the above fact, 6(«) has commutator length | 5| > N.
m By the previous lemma, « is not nullhomologous.
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An application to homology

Remarks about homology

m We have seen that 6(«) internally nullhomotopic implies «
nullhomotopic.

m The preceding example shows that 6(«) internally nullhomologous
does not necessarily imply o nullhomologous.

m In fact, one can check that 6(«) is internally nullhomologous if and
only if « is trivial in C'°P(T"). So, in some sense, their ad hoc
homology theory is really the internal version of the ordinary
homology theory.
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