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A Theorem of Pestov

In the early 1990s, Pestov proved the following theorem
using nonstandard analysis.

Theorem (Pestov)
Let g be a Banach-Lie algebra. Suppose that there exists
a family H of closed Lie subalgebras of g and a
neighborhood V of 0 in g such that

I For each h1, h2 ∈ H, there is an h3 ∈ H such that
h1 ∪ h2 ⊆ h3 (H is directed upwards);

I
⋃
H is dense in g;

I Every h ∈ H is enlargeable and if H is a
corresponding connected, simply connected
Banach-Lie group, then the restriction expH |V ∩ h is
injective.

Then g is enlargeable.
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Idea of the Proof

I Use the fact that H is directed and has a dense union
to find an internal subalgebra h ∈ H∗ such that g ⊆ h.

I Construct the nonstandard hull ĥ of h, which is a
standard Banach-Lie algebra. g will be a closed
subalgebra of ĥ.

I If H was an internal Banach-Lie group whose Lie
algebra was h, use the BCH-series to construct the
nonstandard hull Ĥ of H, which will be a standard
Banach-Lie group whose Lie algebra is ĥ. It follows
that ĥ is an enlargeable Banach-Lie algebra.

I Since g is a closed subalgebra of an enlargeable
Banach-Lie algebra, it is also enlargeable.



Nonstandard Hulls
of Locally

Exponential Lie
Groups and

Algebras

Isaac Goldbring

Introduction

Nonstandard
Analysis

Nonstandard
Smoothness
Conditions on
Locally Convex
Spaces

Proof of the Main
Theorem

Locally Exponential Lie Groups and Algebras

Definition
A locally convex Lie group G is called locally
exponential if there is a smooth exponential map
exp : Lie(G)→ G which is a diffeomorphism between a
neighborhood of 0 in Lie(G) and a neighborhood of 1 in
G.

Definition
A locally convex Lie algebra g is called locally
exponential if there exists a circular, convex open
0-neighborhood U ⊆ g, an open subset D ⊆ U ×U, and a
smooth map mU : D → U such that (U,D,mU ,0) is a
local Lie group satisfying:

1. For x ∈ U and |t |, |s|, |t + s| ≤ 1, we have
(tx , sx) ∈ D and mU(tx , sx) = (t + s)x ;

2. Lie(U,D,mU ,0) ∼= g.
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Pestov’s Theorem for Locally Exponential Lie
Algebras??

If G is a locally exponential Lie group, then Lie(G) is a
locally exponential Lie algebra (use exponential
coordinates!).

Definition
If g is a locally exponential Lie algebra, then we say that g

is enlargeable if there is a locally exponential Lie group
G such that Lie(G) ∼= g.

Due to the existence of an Implicit Function Theorem,
Banach-Lie groups are locally exponential. Due to the
BCH series, Banach-Lie algebras are locally exponential.
It thus makes sense to ask for an analogue of Pestov’s
theorem for locally exponential Lie algebras!
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Difficulties in Extending Pestov’s Theorem

In trying to adapt Pestov’s proof, one runs into a few
problems.

I One can still find an internal subalgebra h ∈ H∗ for
which ĥ is a locally convex Lie algebra and g is a
closed subalgebra of ĥ. However, there is no
guarantee that ĥ will be a locally exponential Lie
algebra.

I Suppose H was an internal locally exponential Lie
group such that Lie(H) ∼= h. The construction of Ĥ is
much harder due to the lack of a BCH series.
Furthermore, once Ĥ has been constructed, proving
that the exponential map from ĥ to Ĥ is a local
diffeomorphism is not immediate either.
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The Main Theorem

Theorem
Suppose g is a locally exponential Lie algebra, H is a
family of closed subalgebras of g, V is a neighborhood of
0 in g and p is a continuous seminorm on g satisfying:

1.
⋃
H is dense in g;

2. for each h ∈ H, there is a locally exponential Lie
group H such that L(H) ∼= h;

3. for each h ∈ H, if H is a connected locally
exponential Lie group such that L(H) ∼= h, then
expH |V ∩ h : V ∩ h→ H is injective;

4. (expH({x ∈ h| p(x) < 1}))2 ⊆Wh, where Wh is an
open neighborhood of 1 contained in expH(V );

5. mU is uniformly continuous on {p < 1}2;
6. mU is uniformly smooth at finite points.

Then g is enlargeable.
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Nonstandard Extensions

Start with a mathematical universe V containing all
relevant mathematical objects, e.g.

I N, R, a locally convex Lie algebra g (basic sets);
I various cartesian products of the above sets;
I the elements of the above sets and the power sets of

the above sets;
Then extend to a nonstandard mathematical universe V ∗:

I To every A ∈ V , there is a corresponding A∗ ∈ V ∗,
e.g. we have N∗, R∗, g∗, π∗, sin∗(x) (which is a
function R∗ → R∗);

I For simplicity, we write a for a∗ when a is an element
of a basic set.

I An object in V ∗ which is not in V is called
nonstandard.



Nonstandard Hulls
of Locally

Exponential Lie
Groups and

Algebras

Isaac Goldbring

Introduction

Nonstandard
Analysis

Nonstandard
Smoothness
Conditions on
Locally Convex
Spaces

Proof of the Main
Theorem

The Transfer Principle
We want V ∗ to behave logically like V , so we assume the

Transfer Principle
If S is a bounded first-order statement about objects in V ,
then it is true in V if and only if it is true in V ∗.

Example
By transfer, for any distinct a,b ∈ R, we have that
a∗,b∗ ∈ R∗ are distinct. Since we have agreed to identify
a with a∗, this allows us to view R as a subset of R∗. Now
suppose that f : R→ R. Then we have f ∗ : R∗ → R∗ and
transfer shows that f ∗|R = f , so we write f for both the
original function and its nonstandard extension. We do
this for arbitrary functions in our nonstandard universe.
Since the axioms for being an ordered field are first-order,
we see that R∗ is an ordered field containing (an
isomorphic copy of) R as a subfield.



Nonstandard Hulls
of Locally

Exponential Lie
Groups and

Algebras

Isaac Goldbring

Introduction

Nonstandard
Analysis

Nonstandard
Smoothness
Conditions on
Locally Convex
Spaces

Proof of the Main
Theorem

Extensions of Lie Algebras

Example
Consider our locally convex Lie algebra g. We then have
the extension of the bracket

[·, ·] : g∗ × g∗ → g∗.

Since the axioms for being a Lie algebra are first-order,
we see that g∗ becomes a Lie algebra (over the field R∗).
Also, each seminorm p on g extends to a seminorm
p : g∗ → g∗. However, if the set of seminorms Γ defining g

is infinite, we will have elements of Γ∗ which are not the
extension of a standard seminorm to g∗ (a consequence
of saturation, to be defined in the next slide).
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Internal Sets and Saturation

If X is a basic set of our universe V , the logical apparatus
of our nonstandard framework only applies to certain
subsets of X ∗, namely the internal subsets of X , which
are the elements of P(X )∗. The richness of nonstandard
extensions come from the following notion.

Definition
Let κ be an infinite cardinal. We say that V ∗ is
κ-saturated if whenever {Oi | i < κ} is a family of internal
sets such that any intersection of a finite number of them
is nonempty, then the intersection of all them is nonempty.

We will assume our V ∗ is κ-saturated for a suitably large
κ.
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An Example of Saturation: Infinitesimals

For n > 0, let On := {x ∈ R∗ | 0 < |x | < 1
n}. It can be

shown that each On is internal. Clearly any finite
intersection of the (On) is nonempty and so saturation
yields that there is α ∈

⋂
n>0On. Such an α is positive but

smaller than any standard real number, i.e. α is an
infinitesimal. Moreover, 1

α is an element of R∗ bigger than
any standard real number, i.e. 1

α is an infinite element of
R.
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Nonstandard Hulls of Internal Subspaces
Suppose that g is a locally convex space with Γ the set of
all continuous seminorms on g. Suppose that h is an
internal subspace of g∗, that is h ⊆ g∗ is internal,
h + h ⊆ h and R∗ · h ⊆ h.

Consider the following sets:

hfin := {x ∈ h∗ | p(x) is finite for all p ∈ Γ}

µh := {x ∈ h∗ | p(x) is infinitesimal for all p ∈ Γ}.

We call hf the set of finite vectors of h and µh the set of
infinitesimal vectors of h. For x , y ∈ h∗, we write x ∼ y
if x − y ∈ µh.

Lemma
hfin is a real vector space and µh is a subspace of hfin. We
denote the quotient hfin/µh by ĥ and call it the
nonstandard hull of h.
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Nonstandard Hulls of Internal Subspaces
(cont’d)

For each p ∈ Γ, define p̂ : ĥ→ R by p(x + µh) := st(p(x)).
(Here, if r ∈ R∗ is finite, then st(r) denotes the unique
standard real number s such that |r − s| is infinitesimal.)
Let Γ̂ := {p̂ | p ∈ Γ}. It is then straightforward to show that
Γ̂ is a separating family of seminorms rendering ĥ a
locally convex space.

One can show that ĝ∗ is complete and ĥ is a closed
subspace of ĝ∗. Moreover, the map ι : g→ ĝ∗ defined by
ι(x) := x + µ is such that p(x) = p̂(ι(x)). In this way, we
can identify g with a closed subspace of ĝ∗.



Nonstandard Hulls
of Locally

Exponential Lie
Groups and

Algebras

Isaac Goldbring

Introduction

Nonstandard
Analysis

Nonstandard
Smoothness
Conditions on
Locally Convex
Spaces

Proof of the Main
Theorem

An Example

Consider the vector space g := C(R,R). g becomes a
locally convex space when equipped with the family of
seminorms (pn), where pn(f ) := supx∈[−n,n] |f (x)|.
Now g∗ = C(R,R)∗, which consists of the internally
continuous functions R∗ → R∗. (Think ε-δ definition of
continuity for ε, δ ∈ R∗)

Note that
g∗fin = {f ∈ g∗ | f (Rfin) ⊆ Rfin}

and
µg∗ = {f ∈ g∗ | f (Rfin) ⊆ µR∗}.

Note that ĝ∗ is a proper extension of of g; indeed, an
element of gfin which makes an finite, noninfinitesimal
jump on an interval of infinitesimal radius cannot be
infinitely close to an element of g.
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Nonstandard Hulls of Internal Lie Algebras
Now suppose that g is a locally convex Lie algebra and h

is an internal subalgebra of g∗, i.e. h is an internal
subspace of g∗ and [h, h] ⊆ h.

Lemma
hf is a real Lie algebra and µh is a Lie ideal of hf .

Part of the Proof
I Fix x , y ∈ hfin and p a continuous seminorm on g.

Choose a continuous seminorm q on g and r ∈ R>0

so that for all a,b ∈ g, if q(a),q(b) < r , then
p([a,b]) < 1. Since x , y ∈ hfin, we can choose
α ∈ R>0 such that q(αx),q(αy) < r . Then
p([αx , αy ]) < 1, whence p([x , y ]) < 1

α2 . This shows
that [hfin, hfin] ⊆ hfin.

I Similar reasoning shows that [hfin, µh] ⊆ µh.
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Nonstandard Hulls of Internal Lie Algebras
(cont’d)

We let ĥ := hf/µh. Then ĥ is a real Lie algebra. Moreover,
one can show that ĥ is a locally convex Lie algebra with
respect to the set of seminorms Γ̂ defined above. As
before, ĥ is a closed subalgebra of ĝ∗ and we can identify
g with a closed subalgebra of ĝ∗.
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Internal Linear Maps

For the rest of this section, E and F denote locally convex
spaces. Let Link (E ,F ) denote the set of k -linear maps
from E to F . Then Link (E ,F )∗ denotes the set of internal
k -linear maps from E∗ to F ∗. Note that such maps are
k -linear maps from the R∗-vector space E∗ to the
R∗-vector space F ∗.

Definition
FLink (E∗,F ∗) := {T ∈ Link (E∗,F ∗) | T ((Ef )k ) ⊆ Ff}.

Example
Let λ ∈ R∗. Then the internal linear map
x 7→ λx : E∗ → E∗ is in FLin1(E∗,E∗) if and only if λ is a
finite element of R∗.
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Uniformly Smooth at Finite Points

Fix f : U → F , where U ⊆ E is open. Let

in(U∗) = {a ∈ U∗ | for all b ∈ E∗, if b ∼ a, then b ∈ U∗}.

Definition
We define what it means for f to be uniformly Ck at
finite points by recursion. Say that f is uniformly C1 at
finite points if there is a map df : U → Lin(E ,F ) such that
for every a ∈ in(U∗) ∩ Ef , every h ∈ Ef , and every positive
infinitesimal δ, we have

df (a) ∈ FLin1(E∗,F ∗)

and
1
δ

(f (a + δh)− f (a)) ∼ df (a)(h).
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Uniformly Smooth at Finite Points (cont’d)

Definition (Cont’d)
Suppose, inductively, that f is uniformly Ck at finite points.
Then f is uniformly Ck+1 at finite points if there is a map
dk+1f : U → Link+1(E ,F ) such that for every
a ∈ in(U∗) ∩ Ef , every x ∈ Ef , every h ∈ (Ef )k , and every
positive infinitesimal δ, we have

dk+1f (a) ∈ FLink+1(E∗,F ∗)

and

1
δ

(dk f (a + δx)(h)− dk f (a)(h)) ∼ dk+1f (a)(h, x).

We say that f is uniformly smooth at finite points if f is
uniformly Ck at finite points for every k .
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Reason for the Definition
Write

U =
⋃
i∈I

ni⋂
j=1

{x ∈ E | pij(x − xij) < εij}

and define

Û =
⋃
i∈I

ni⋂
j=1

{x + µE ∈ Ê | p̂ij((x − xij) + µE ) < εij}.

Theorem
Suppose that f is uniformly smooth at finite points and
f (U∗ ∩ Ef ) ⊆ Ff . Then the map f̂ : Û → F̂ given by
f (x + µE ) := f (x) + µF is well-defined and smooth.
Moreover,

dk (f̂ )(a + µE ,h + µE ) = dk f (a,h) + µF .
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Another Way of Definining Smoothness

Suppose f is C1. Let
U [1] := {(x , y , t) ∈ U × E × R | x + ty ∈ U} and define
f [1] : U [1] → F by

f [1](x , y , t) =

{
1
t (f (x + ty)− f (x)) if t 6= 0
df (x)(y) if t = 0

Then the Mean Value Theorem shows that f [1] is
continuous.
More generally, define U [k ] and f [k ] recursively by

U [k+1] := (U [k ])[1] and f [k+1] := (f [k ])[1].

Fact
[Bertram, Glöckner, Neeb] Suppose f is Ck . Then f is
Ck+1 if and only if f [k ] is C1.
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Strong Smoothness

Definition
We define the notion f is strongly Ck by recursion. We
say that f is strongly C1 if f is continuous and f [1] is
uniformly continuous. Supposing that f is strongly Ck , we
say that f is strongly Ck+1 is f [k ] is strongly C1. We say
that f is strongly smooth if f is strongly Ck for all k .

Lemma
If f is strongly Ck , then f is uniformly Ck at finite points.
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The Case of Complete (HM)-spaces
Definition
E is an (HM)-space if whenever F is an ultrafilter on E
with the property that for every U from a fixed
neighborhood base of 0, there is n such that nU ∈ F ,
then F is a Cauchy filter.

I In nonstandard terms, this means that the standard
points are “dense” in the finite points.

I For metrizable E , E is an (HM)-space if and only if
every bounded set is totally bounded.

I Examples of (HM)-spaces are the (FM)-spaces, the
nuclear spaces, and the Schwarz spaces (e.g. Silva
spaces).

Lemma
For complete (HM)-spaces, “uniformly smooth at finite
points” is the same notion as “smooth”.
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Finite Functions

Definition
f : U → F is finite if f (U∗ ∩ Efin) ⊆ Ffin.
Recall that we needed f to be finite in order for it to
induce a map f̂ : Û → F̂ .

Theorem
I If f (U) is bounded, then f is finite.
I If f is uniformly continuous and U is convex, then f is

finite.
I If f is Lipshitz, then f is finite.
I If E is an (HM)-space, then f has a restriction which

is finite.
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Main Theorem Recalled

Theorem
Suppose g is a locally exponential Lie algebra, H is a
family of closed subalgebras of g, V is a neighborhood of
0 in g and p is a continuous seminorm on g satisfying:

1.
⋃
H is dense in g;

2. for each h ∈ H, there is a locally exponential Lie
group H such that L(H) ∼= h;

3. for each h ∈ H, if H is a connected locally
exponential Lie group such that L(H) ∼= h, then
expH |V ∩ h : V ∩ h→ H is injective;

4. (expH({x ∈ h| p(x) < 1}))2 ⊆Wh, where Wh is an
open neighborhood of 1 contained in expH(V );

5. mU is uniformly continuous on {p < 1}2;
6. mU is uniformly smooth at finite points.

Then g is enlargeable.
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Main Theorem Recalled

Theorem
Suppose g is a locally exponential Lie algebra, H is a
family of closed subalgebras of g, V is a neighborhood of
0 in g and p is a continuous seminorm on g satisfying:

1.
⋃
H is dense in g;

2. for each h ∈ H, there is a locally exponential Lie
group H such that L(H) ∼= h;

3. for each h ∈ H, if H is a connected locally
exponential Lie group such that L(H) ∼= h, then
expH |V ∩ h : V ∩ h→ H is injective;

4. (expH({x ∈ h| p(x) < 1}))2 ⊆Wh, where Wh is an
open neighborhood of 1 contained in expH(V );

5. mU is finite;
6. mU is uniformly smooth at finite points.

Then g is enlargeable.
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Sketch of The Proof

I As in the original Pestov Theorem, find h ∈ H∗ such
that the map ι : g→ ĝ∗ given by ι(x) = x + µ actually
takes values in ĥ.

I Let H be an internal locally exponential Lie group
such that Lie(H) ∼= h. Define

Hf :=
⋃
n

expH(hf )n

and
µH := exp(µh).

I Hf is clearly a group. Using our extra assumptions,
we show that µH is a normal subgroup of Hf .

I Let Ĥ := Hf/µH and let πH : Hf → Ĥ be the quotient
map.
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Sketch of The Proof (Cont’d)

I One shows that for all x , y ∈ h, if x + µh = y + µh,
then πH(exp(x)) = πH(exp(y)).

I This allows us to define ˆexp : ĥ→ Ĥ by
ˆexp(x + µh) = πH(exp x).

I Let Ŵ := {x + µh | p̂(x + µh) < 1}. Then ˆexp is
injective on Ŵ .

I Let mĥ : Ŵ × Ŵ → ĥ be given by
mĥ(x + µh, y + µh) := (x ∗ y) + µh. By uniform
smoothness at finite points, this is a smooth map and
suitably restricted, this witnesses that Ŵ is a local
Lie group satisfying the necessary hypotheses to
show that ĥ is a locally exponential Lie algebra.
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Sketch of The Proof (Cont’d)

I Equip Ĥ1, the subgroup of Ĥ generated by exp(Ŵ ),
with the structure of a locally exponential Lie group
such that Lie(Ĥ1) ∼= ĥ, whence ĥ is enlargeable.

I Since ι : g→ ĥ is an injective morphism of locally
convex Lie algebras, it follows that g is enlargeable.
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A Standard Formulation

Theorem
Suppose g is a locally exponential Lie algebra, H is a
family of closed subalgebras of g, V is a neighborhood of
0 in g and p is a continuous seminorm on g satisfying:

1.
⋃
H is dense in g;

2. for each h ∈ H, there is a locally exponential Lie
group H such that L(H) ∼= h;

3. for each h ∈ H, if H is a connected locally
exponential Lie group such that L(H) ∼= h, then
expH |V ∩ h : V ∩ h→ H is injective;

4. expH({x ∈ h| p(x) < 1})2 ⊆Wh, where Wh is an
open neighborhood of 1 contained in expH(V ).

Moreover, assume that either the local group operation
on g is strongly smooth or that g is modeled on a
complete (HM)-space. Then g is enlargeable.
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A Question

Even for locally exponential Lie algebras with strongly
smooth local group operation or those modeled on
complete (HM)-spaces, we have the extra assumption (4)
that does not appear in the original Pestov theorem.
(4) (expH({x ∈ h| p(x) < 1}))2 ⊆Wh, where Wh is an

open neighborhood of 1 contained in expH(V ).
The real import of this assumption is that the local group
operation on each h ∈ H given by exponential
coordinates agrees with the local group operation mU on
g on the set {(x , y) ∈ h× h | p(x),p(y) < 1}.

Question
Can assumption (4) be removed?



Nonstandard Hulls
of Locally

Exponential Lie
Groups and

Algebras

Isaac Goldbring

Introduction

Nonstandard
Analysis

Nonstandard
Smoothness
Conditions on
Locally Convex
Spaces

Proof of the Main
Theorem

References

I I. Goldbring, Nonstandard Hulls of Locally
Exponential Lie Algebras, Preprint available at
http://www.math.uiuc.edu/ ˜ igoldbr2.

I V. Pestov, Nonstandard Hulls of Banach-Lie Groups
and Algebras, Nova Journal of Algebra and Geom. 1
(1992), pp. 371–384.


	Introduction
	Nonstandard Analysis
	Nonstandard Smoothness Conditions on Locally Convex Spaces
	Proof of the Main Theorem

