A NOTE ON PROPERTY (T)

ISAAC GOLDBRING

In this note, we make a small observation about Property (T); this result is known (see Corollary F.2.9 of [1]), but our proof is new and short.

Fix a locally compact group G and a (complex) Hilbert space H. Then a *unitary representation* of G in H is a group homomorphism $\pi : G \to U(H)$ from G into the group of unitary operators on H which is strongly continuous, that is, the map $g \mapsto \pi(g)(x) : G \to H$ is continuous for every $x \in H$.

Fix a unitary representation $\pi : G \to U(H)$. If $\epsilon \in \mathbb{R}^{>0}$ and K is a compact subset of G, we say that $x \in H$ is an (ϵ, K) -invariant vector if $\|\pi(g)(x) - x\| < \epsilon$ for all $g \in K$. We say that $x \in H$ is an invariant vector if $\pi(g)(x) = x$ for all $g \in G$.

G is said to have Kazhdan's property (T) if whenever $\pi : G \to U(H)$ is a unitary representation which has (ϵ, K) -invariant unit vectors for every $\epsilon \in \mathbb{R}^{>0}$ and every compact $K \subseteq G$, then π has a nonzero invariant vector. The point of this note is to show that the only obstruction to property (T) are infinite-dimensional representations:

Proposition 0.1. Suppose that $\pi : G \to U(H)$ is a unitary representation of G in H, where dim $(H) < \infty$. Suppose that π has (ϵ, K) -invariant unit vectors for every $\epsilon \in \mathbb{R}^{>0}$ and every compact $K \subseteq G$. Then π has an invariant unit vector.

Proof. We use nonstandard analysis to prove this fact. We work in a κ -saturated nonstandard universe, where $\kappa > |G|$. Fix a positive infinitesimal ϵ . For each $g \in G$, let

$$A_g := \{ x \in H^* \mid ||x|| = 1, ||\pi(g)(x) - x|| < \epsilon \}.$$

Clearly each A_g is internal. Moreover, by the transfer of our hypothesis, each A_g is nonempty and the family $(A_g \mid g \in G)$ has the finite intersection property. Thus, by saturation, there is $x \in H^*$ such that ||x|| = 1 and $||\pi(g)(x) - x|| < \epsilon$ for each $g \in G$.

Since dim(H) $< \infty$, there is a (unique) vector in H infinitely close to x; we call this vector st(x). We claim that st(x) is an invariant vector for π . Fix $g \in G$. Since $\pi(g) : H \to H$ is continuous, we know that $\pi(g)(\operatorname{st}(x)) \approx \pi(g)(x)$; here \approx means "infinitely close to". We thus have that

$$\pi(g)(\operatorname{st}(x)) \approx \pi(g)(x) \approx x \approx \operatorname{st}(x).$$

Since $\pi(g)(\operatorname{st}(x))$, $\operatorname{st}(x) \in H$, we have that $\pi(g)(\operatorname{st}(x)) = \operatorname{st}(x)$.

ISAAC GOLDBRING

References

 B. Bekka, P. de la Harpe, A. Valette, *Kazhdan's Property (T)*, New Mathematical Monographs (11), Cambridge University Press, 2008.