A NOTE ON PROPERTY (T)

ISAAC GOLDBRING

In this note, we make a small observation about Property (T); this result is known (see Corollary F.2.9 of [1]), but our proof is new and short.

Fix a locally compact group G and a (complex) Hilbert space H. Then a unitary representation of G in H is a group homomorphism $\pi: G \rightarrow U(H)$ from G into the group of unitary operators on H which is strongly continuous, that is, the map $g \mapsto \pi(g)(x): G \rightarrow H$ is continuous for every $x \in H$.

Fix a unitary representation $\pi: G \rightarrow U(H)$. If $\epsilon \in \mathbb{R}^{>0}$ and K is a compact subset of G, we say that $x \in H$ is an (ϵ, K)-invariant vector if $\|\pi(g)(x)-x\|<\epsilon$ for all $g \in K$. We say that $x \in H$ is an invariant vector if $\pi(g)(x)=x$ for all $g \in G$.
G is said to have Kazhdan's property (T) if whenever $\pi: G \rightarrow U(H)$ is a unitary representation which has (ϵ, K)-invariant unit vectors for every $\epsilon \in \mathbb{R}^{>0}$ and every compact $K \subseteq G$, then π has a nonzero invariant vector. The point of this note is to show that the only obstruction to property (T) are infinite-dimensional representations:

Proposition 0.1. Suppose that $\pi: G \rightarrow U(H)$ is a unitary representation of G in H, where $\operatorname{dim}(H)<\infty$. Suppose that π has (ϵ, K)-invariant unit vectors for every $\epsilon \in \mathbb{R}^{>0}$ and every compact $K \subseteq G$. Then π has an invariant unit vector.

Proof. We use nonstandard analysis to prove this fact. We work in a κ saturated nonstandard universe, where $\kappa>|G|$. Fix a positive infinitesimal ϵ. For each $g \in G$, let

$$
A_{g}:=\left\{x \in H^{*} \mid\|x\|=1,\|\pi(g)(x)-x\|<\epsilon\right\} .
$$

Clearly each A_{g} is internal. Moreover, by the transfer of our hypothesis, each A_{g} is nonempty and the family $\left(A_{g} \mid g \in G\right)$ has the finite intersection property. Thus, by saturation, there is $x \in H^{*}$ such that $\|x\|=1$ and $\|\pi(g)(x)-x\|<\epsilon$ for each $g \in G$.

Since $\operatorname{dim}(H)<\infty$, there is a (unique) vector in H infinitely close to x; we call this vector $\operatorname{st}(x)$. We claim that $\operatorname{st}(x)$ is an invariant vector for π. Fix $g \in G$. Since $\pi(g): H \rightarrow H$ is continuous, we know that $\pi(g)(\operatorname{st}(x)) \approx \pi(g)(x) ;$ here \approx means "infinitely close to". We thus have that

$$
\pi(g)(\operatorname{st}(x)) \approx \pi(g)(x) \approx x \approx \operatorname{st}(x)
$$

Since $\pi(g)(\operatorname{st}(x)), \operatorname{st}(x) \in H$, we have that $\pi(g)(\operatorname{st}(x))=\operatorname{st}(x)$.

References

[1] B. Bekka, P. de la Harpe, A. Valette, Kazhdan's Property (T), New Mathematical Monographs (11), Cambridge University Press, 2008.

