DEFINABLE CLOSURE IN RANDOMIZATIONS

URI ANDREWS, ISAAC GOLDBRING, AND H. JEROME KEISLER

Abstract

The randomization of a complete first order theory T is the complete continuous theory T^{R} with two sorts, a sort for random elements of models of T, and a sort for events in an underlying probability space. We give necessary and sufficient conditions for an element to be definable over a set of parameters in a model of T^{R}.

1. Introduction

A randomization of a first order structure \mathcal{M}, as introduced by Keisler [Kei1] and formalized as a metric structure by Ben Yaacov and Keisler [BK], is a continuous structure \mathcal{N} with two sorts, a sort for random elements of \mathcal{M}, and a sort for events in an underlying atomless probability space. Given a complete first order theory T, the theory T^{R} of randomizations of models of T forms a complete theory in continuous logic, which is called the randomization of T. In a model \mathcal{N} of T^{R}, for each n-tuple \vec{a} of random elements and each first order formula $\varphi(\vec{v})$, the set of points in the underlying probability space where $\varphi(\vec{a})$ is true is an event denoted by $\llbracket \varphi(\vec{a}) \rrbracket$.

In a first order structure \mathcal{M}, an element b is definable over a set A of elements of \mathcal{M} (called parameters) if there is a tuple \vec{a} in A and a formula $\varphi(u, \vec{a})$ such that

$$
\mathcal{M} \models(\forall u)(\varphi(u, \vec{a}) \leftrightarrow u=b) .
$$

In a general metric structure \mathcal{N}, an element b is said to be definable over a set of parameters A if there is a sequence of tuples \vec{a}_{n} in A and continuous formulas $\Phi_{n}\left(x, \vec{a}_{n}\right)$ whose truth values converge uniformly to the distance from x to b. In this paper we give necessary and sufficient conditions for definability in a model of the randomization theory T^{R}. These conditions can be stated in terms of sequences of first order formulas. The results in this paper will be applied in a forthcoming paper about independence relations in randomizations.

In Theorem 3.1.2, we show that an event E is definable over a set A of parameters if and only if it is the limit of a sequence of events of the form $\llbracket \varphi_{n}\left(\vec{a}_{n}\right) \rrbracket$, where each φ_{n} is a first order formula and each \vec{a}_{n} is a tuple from A.

In Theorem 3.3.6, we show that a random element b is definable over a set A of parameters if and only if b is the limit of a sequence of random elements

[^0]b_{n} such that for each n,
$$
\llbracket(\forall u)\left(\varphi_{n}\left(u, \vec{a}_{n}\right) \leftrightarrow u=b_{n}\right) \rrbracket
$$
has probability one for some first order formula $\varphi_{n}(u, \vec{v})$ and a tuple \vec{a}_{n} from A. In Section 4 we give some consequences in the special case that the underlying first order theory T is \aleph_{0}-categorical.

Continuous model theory in its current form is developed in the papers $[\mathrm{BBHU}]$ and $[\mathrm{BU}]$. The papers [Go1], [Go2], [Go3] deal with definability questions in metric structures. Randomizations of models are treated in [AK], [Be], [BK], [EG], [GL], [Ke1], and [Ke2].

2. Preliminaries

We refer to [BBHU] and [BU] for background in continuous model theory, and follow the notation of [BK]. We assume familiarity with the basic notions about continuous model theory as developed in [BBHU], including the notions of a theory, structure, pre-structure, model of a theory, elementary extension, isomorphism, and κ-saturated structure. In particular, the universe of a pre-structure is a pseudo-metric space, the universe of a structure is a complete metric space, and every pre-structure has a unique completion. In continuous logic, formulas have truth values in the unit interval $[0,1]$ with 0 meaning true, the connectives are continuous functions from $[0,1]^{n}$ into $[0,1]$, and the quantifiers are sup and inf. A tuple is a finite sequence, and $A^{<\mathbb{N}}$ is the set of all tuples of elements of A.
2.1. The theory T^{R}. We assume throughout that L is a finite or countable first order signature, and that T is a complete theory for L whose models have at least two elements.

The randomization signature L^{R} is the two-sorted continuous signature with sorts \mathbb{K} (for random elements) and \mathbb{B} (for events), an n-ary function symbol $\llbracket \varphi(\cdot) \rrbracket$ of sort $\mathbb{K}^{n} \rightarrow \mathbb{B}$ for each first order formula φ of L with n free variables, a $[0,1]$-valued unary predicate symbol μ of sort \mathbb{B} for probability, and the Boolean operations $\top, \perp, \sqcap, \sqcup, \neg$ of sort \mathbb{B}. The signature L^{R} also has distance predicates $d_{\mathbb{B}}$ of sort \mathbb{B} and $d_{\mathbb{K}}$ of sort \mathbb{K}. In L^{R}, we use $\mathrm{B}, \mathrm{C}, \ldots$ for variables or parameters of sort $\mathbb{B} . \mathrm{B} \doteq \mathrm{C}$ means $d_{\mathbb{B}}(\mathrm{B}, \mathrm{C})=0$, and $\mathrm{B} \sqsubseteq \mathrm{C}$ means $\mathrm{B} \doteq \mathrm{B} \sqcap \mathrm{C}$.

A pre-structure for T^{R} will be a pair $\mathcal{P}=(\mathcal{K}, \mathcal{B})$ where \mathcal{K} is the part of sort \mathbb{K} and \mathcal{B} is the part of sort \mathbb{B}. The reduction of \mathcal{P} is the pre-structure $\mathcal{N}=(\widehat{\mathcal{K}}, \widehat{\mathcal{B}})$ obtained from \mathcal{P} by identifying elements at distance zero, and the associated mapping from \mathcal{P} onto \mathcal{N} is called the reduction map. The completion of \mathcal{P} is the structure obtained by completing the metrics in the reduction of \mathcal{P}. A pre-structure \mathcal{P} is called pre-complete if the reduction of \mathcal{P} is already the completion of \mathcal{P}.

In [BK], the randomization theory T^{R} is defined by listing a set of axioms. We will not repeat these axioms here, because it is simpler to give the following model-theoretic characterization of T^{R}.

Definition 2.1.1. Given a model \mathcal{M} of T, a nice randomization of \mathcal{M} is a pre-complete structure $(\mathcal{K}, \mathcal{B})$ for L^{R} equipped with an atomless probability space $(\Omega, \mathcal{B}, \mu)$ such that:
(1) \mathcal{B} is a σ-algebra with $\top, \perp, \sqcap, \sqcup, \neg$ interpreted by $\Omega, \emptyset, \cap, \cup, \backslash$.
(2) \mathcal{K} is a set of functions $a: \Omega \rightarrow M$.
(3) For each formula $\psi(\vec{x})$ of L and tuple \vec{a} in \mathcal{K}, we have

$$
\llbracket \psi(\vec{a}) \rrbracket=\{\omega \in \Omega: \mathcal{M} \models \psi(\vec{a}(\omega))\} \in \mathcal{B} .
$$

(4) \mathcal{B} is equal to the set of all events $\llbracket \psi(\vec{a}) \rrbracket$ where $\psi(\vec{v})$ is a formula of L and \vec{a} is a tuple in \mathcal{K}.
(5) For each formula $\theta(u, \vec{v})$ of L and tuple \vec{b} in \mathcal{K}, there exists $a \in \mathcal{K}$ such that

$$
\llbracket \theta(a, \vec{b}) \rrbracket=\llbracket(\exists u \theta)(\vec{b}) \rrbracket .
$$

(6) On \mathcal{K}, the distance predicate $d_{\mathbb{K}}$ defines the pseudo-metric

$$
d_{\mathbb{K}}(a, b)=\mu \llbracket a \neq b \rrbracket .
$$

(7) On \mathcal{B}, the distance predicate $d_{\mathbb{B}}$ defines the pseudo-metric

$$
d_{\mathbb{B}}(\mathrm{B}, \mathrm{C})=\mu(\mathrm{B} \triangle \mathrm{C})
$$

Definition 2.1.2. For each first order theory T, the randomization theory T^{R} is the set of sentences that are true in all nice randomizations of models of T.

It follows that for each first order sentence φ, if $T \models \varphi$ then $T^{R} \models \llbracket \varphi \rrbracket \doteq$ T. The following basic facts are from [BK], Theorem 2.1 and Proposition 2.2, Example 3.4 (ii), Proposition 2.7, and Theorem 2.9.

Fact 2.1.3. For every complete first order theory T, the randomization theory T^{R} is complete.

Fact 2.1.4. Every model \mathcal{M} of T has nice randomizations.
Fact 2.1.5. (Fullness) Every pre-complete model $\mathcal{P}=(\mathcal{K}, \mathcal{B})$ of T^{R} has perfect witnesses, i.e.,
(1) For each first order formula $\theta(u, \vec{v})$ and each \vec{b} in \mathcal{K}^{n} there exists $a \in \mathcal{K}$ such that

$$
\llbracket \theta(a, \vec{b}) \rrbracket \doteq \llbracket(\exists u \theta)(\vec{b}) \rrbracket
$$

(2) For each $\mathrm{B} \in \mathcal{B}$ there exist $a, b \in \mathcal{K}$ such that $\mathrm{B} \doteq \llbracket a=b \rrbracket$.

Corollary 2.1.6. Every model \mathcal{N} of T^{R} has a pair of elements c, d such that $\llbracket c \neq d \rrbracket=\mathrm{T}$.
Proof. Every model of T has at least two elements, so $T \models(\exists u)(\exists v) u \neq v$. The result follows by applying Fullness twice.

Fact 2.1.7. (Strong quantifier elimination) Every formula Φ in the continuous language L^{R} is T^{R}-equivalent to a formula with the same free variables and no quantifiers of sort \mathbb{K} or \mathbb{B}.

Lemma 2.1.8. Let $\mathcal{P}=(\mathcal{K}, \mathcal{B})$ be a pre-complete model of T^{R} and let $a, b \in$ \mathcal{K} and $\mathrm{B} \in \mathcal{B}$. Then there is an element $c \in \mathcal{K}$ that agrees with a on B and agrees with b on $\neg \mathrm{B}$, that is, $\mathrm{B} \sqsubseteq \llbracket c=a \rrbracket$ and $(\neg \mathrm{B}) \sqsubseteq \llbracket c=b \rrbracket$.

Definition 2.1.9. In Lemma 2.1.8, we will call c a characteristic function of B with respect to a, b.

Note that the distance between any two characteristic functions of an event B with respect to elements a, b is zero. In particular, in a model of T^{R}, the characteristic function is unique.

Proof of Lemma 2.1.8. By Fact 2.1.5 (2), there exist $d, e \in \mathcal{K}$ such that $\mathrm{B} \doteq \llbracket d=e \rrbracket$. The first order sentence

$$
(\forall u)(\forall v)(\forall x)(\forall y)(\exists z)[(x=y \rightarrow z=u) \wedge(x \neq y \rightarrow z=v)]
$$

is logically valid, so we must have

$$
\llbracket(\exists z)[(d=e \rightarrow z=a) \wedge(d \neq e \rightarrow z=b)] \rrbracket \doteq .
$$

By Fact 2.1.5 (1) there exists $c \in \mathcal{K}$ such that

$$
\llbracket d=e \rightarrow c=a \rrbracket \doteq \top, \quad \llbracket d \neq e \rightarrow c=b \rrbracket \doteq \top,
$$

so $\llbracket d=e \rrbracket \sqsubseteq \llbracket c=a \rrbracket$ and $\llbracket d \neq e \rrbracket \sqsubseteq \llbracket c=b \rrbracket$.
We will need the following result, which is a consequence of Theorem 3.11 of $[\mathrm{Be}]$. Since the setting in $[\mathrm{Be}]$ is quite different from the present paper, we give a direct proof here.

Proposition 2.1.10. Every model of T^{R} is isomorphic to the reduction of a nice randomization of a model of T.

Proof. Let $\mathcal{N}=(\widehat{\mathcal{K}}, \widehat{\mathcal{B}})$ be a model of T^{R} of cardinality κ. Let Ω be the Stone space of the Boolean algebra $\widehat{\mathcal{B}}=(\widehat{\mathcal{B}}, \top, \perp, \sqcap, \sqcup, \neg)$. Thus Ω is a compact topological space, the points of Ω are ultrafilters, we may identify $\widehat{\mathcal{B}}$ with the Boolean algebra of clopen sets of Ω, and $\mu^{\mathcal{N}}$ is a finitely additive probability measure on $\widehat{\mathcal{B}}$.

We next show that μ is σ-additive on $\widehat{\mathcal{B}}$. To do this, we assume that $\mathrm{A}_{0} \supseteq$ $\mathrm{A}_{1} \supseteq \cdots$ in $\widehat{\mathcal{B}}$ and $\mathrm{C}=\bigcap_{n} \mathrm{~A}_{n} \in \widehat{\mathcal{B}}$, and prove that $\mu(\mathrm{C})=\lim _{n \rightarrow \infty} \mu\left(\mathrm{~A}_{n}\right)$. Indeed, the family $\left\{\mathrm{C} \cup\left(\Omega \backslash \mathrm{A}_{n}\right): n \in \mathbb{N}\right\}$ is an open covering of Ω, so by the topological compactness of Ω, we have $\Omega=\bigcup_{k=0}^{n}\left(\mathrm{C} \cup\left(\Omega \backslash \mathrm{A}_{k}\right)\right)$ for some $n \in \mathbb{N}$. Then $\mathrm{C}=\mathrm{A}_{n}$, so $\mu(\mathrm{C})=\mu\left(\mathrm{A}_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(\mathrm{~A}_{n}\right)$.

By the Caratheodory theorem, there is a complete probability space $(\Omega, \mathcal{B}, \mu)$ such that $\mathcal{B} \supseteq \widehat{\mathcal{B}}, \mu$ agrees with $\mu^{\mathcal{N}}$ on $\widehat{\mathcal{B}}$, and for each $\mathrm{B} \in \mathcal{B}$ and $m>0$ there is a countable sequence $\mathrm{A}_{m 0} \subseteq \mathrm{~A}_{m 1} \subseteq \cdots$ in $\widehat{\mathcal{B}}$ such that

$$
\begin{equation*}
B \subseteq \bigcup_{n} \mathrm{~A}_{m n} \text { and } \mu\left(\bigcup_{n} \mathrm{~A}_{m n}\right) \leq \mu(\mathrm{B})+1 / m \tag{2.1}
\end{equation*}
$$

Note that since the probability space $(\Omega, \mathcal{B}, \mu)$ is complete, every subset of Ω that contains a set in \mathcal{B} of measure one also belongs to \mathcal{B} and has measure one.

We claim that for each $B \in \mathcal{B}$ there is a unique event $f(B) \in \widehat{\mathcal{B}}$ such that $\mu(f(B) \triangle B)=0$. The uniqueness of $f(B)$ follows from the fact that the distance function $d_{\mathbb{B}}(\mathrm{C}, \mathrm{D})=\mu(\mathrm{C} \triangle \mathrm{D})$ is a metric on $\widehat{\mathcal{B}}$. To show the existence of $f(\mathrm{~B})$, for each $m>0$ let $\mathrm{A}_{m 0} \subseteq \mathrm{~A}_{m 1} \subseteq \cdots$ be as in (2.1). Note that $\left(\mathrm{A}_{m 0}, \mathrm{~A}_{m 1}, \ldots\right)$ is a Cauchy sequence of events in the model \mathcal{N}, so there is an event $C_{m} \in \widehat{\mathcal{B}}$ such that $\mathrm{C}_{m}=\lim _{n \rightarrow \infty} \mathrm{~A}_{m n}$. Hence $\lim _{n \rightarrow \infty} \mu\left(\mathrm{~A}_{m n} \triangle \mathrm{C}_{m}\right)=$ 0 , so $\mu\left(\left(\bigcup_{n} \mathrm{~A}_{m n}\right) \triangle \mathrm{C}_{m}\right)=0$. Then $\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots\right)$ is a Cauchy sequence, so there is an event $f(\mathrm{~B})=\lim _{m \rightarrow \infty} \mathrm{C}_{m}$ in $\widehat{\mathcal{B}}$ with $\mu(f(\mathrm{~B}) \triangle \mathrm{B})=0$.

We make some observations about the mapping $f: \mathcal{B} \rightarrow \widehat{\mathcal{B}}$. If $B, C \in \mathcal{B}$ and $d_{\mathbb{B}}(B, C)=0$, then $f(B)=f(C)$. For each $B, C \in \mathcal{B}$, we have

$$
\begin{gathered}
f(\mathrm{~B} \cup C)=f(\mathrm{~B}) \cup f(\mathrm{C}), \quad f(\mathrm{~B} \cap \mathrm{C})=f(\mathrm{~B}) \cap f(\mathrm{C}), \\
\Omega \backslash f(\mathrm{~B})=f(\Omega \backslash \mathrm{~B}), \quad \mu(\mathrm{B})=\mu(f(\mathrm{~B})) .
\end{gathered}
$$

Moreover, the mapping f sends \mathcal{B} onto $\widehat{\mathcal{B}}$, because if $C \in \widehat{\mathcal{B}}$ then $C \in \mathcal{B}$ and $f(\mathrm{C})=\mathrm{C}$. Therefore the mapping \widehat{f} that sends the equivalence class of each $\mathrm{B} \in \mathcal{B}$ under $d_{\mathbb{B}}$ to $f(\mathrm{~B})$ is well defined and is an isomorphism from the reduction of the pre-structure $(\mathcal{B}, \sqcup, \sqcap, \neg . \top, \perp, \mu)$ onto the measured algebra $(\widehat{\mathcal{B}}, \sqcup, \sqcap, \neg . \top, \perp, \mu)$.

A model \mathcal{M} of T is κ^{+}-universal if every model of T of cardinality $\leq \kappa$ is elementarily embeddable in \mathcal{M}. By Theorem 5.1.12 in [CK], every κ saturated model of T is κ^{+}-universal, so κ^{+}-universal models of T exist. We now assume that \mathcal{M} is a κ^{+}-universal model of T, and prove that \mathcal{N} is isomorphic to the reduction of a nice randomization of \mathcal{M} with the underlying probability space $(\Omega, \mathcal{B}, \mu)$.

In the following paragraphs, we will use boldface letters $\boldsymbol{b}, \boldsymbol{d}, \ldots$ for elements of $\widehat{\mathcal{K}}$. Let $L_{\widehat{\mathcal{K}}}$ be the first order signature formed by adding a constant symbol for each element $\boldsymbol{b} \in \widehat{\mathcal{K}}$. For each $\omega \in \Omega$, the set of $L_{\widehat{\mathcal{K}}}$-sentences

$$
U(\omega)=\{\psi(\overrightarrow{\boldsymbol{b}}): \omega \in \llbracket \psi(\overrightarrow{\boldsymbol{b}}) \rrbracket\}
$$

is consistent with T and has cardinality $\leq \kappa$. By the Compactness and Löwenheim-Skolem theorems, each $U(\omega)$ has a model $\left(\mathcal{M}_{\omega}, \boldsymbol{b}_{\omega}\right)_{\boldsymbol{b} \in \widehat{\mathcal{K}}}$ of cardinality $\leq \kappa$. Since \mathcal{M} is κ^{+}-universal, for each $\omega \in \Omega$ we may choose an elementary embedding $h_{\omega}: \mathcal{M}_{\omega} \prec \mathcal{M}$. Then $\left(\mathcal{M}, h_{\omega}\left(\boldsymbol{b}_{\omega}\right)\right)_{\boldsymbol{b} \in \widehat{\mathcal{K}}} \models U(\omega)$ for every $\omega \in \Omega$. It follows that for each formula $\psi(\vec{v})$ of L and each tuple $\overrightarrow{\boldsymbol{b}} \in \widehat{\mathcal{K}}^{<\mathbb{N}}$,

$$
\llbracket \psi(\overrightarrow{\boldsymbol{b}}) \rrbracket=\left\{\omega \in \Omega: \mathcal{M}_{\omega} \models \psi\left(\overrightarrow{\boldsymbol{b}}_{\omega}\right)\right\}=\left\{\omega \in \Omega: \mathcal{M} \models \psi\left(h_{\omega}\left(\overrightarrow{\boldsymbol{b}}_{\omega}\right)\right)\right\} \in \widehat{\mathcal{B}} .
$$

For each formula $\psi(\vec{v})$ of L and tuple \vec{c} of functions in M^{Ω}, define

$$
\llbracket \psi(\vec{c}) \rrbracket:=\{\omega \in \Omega: \mathcal{M} \equiv \psi(\vec{c}(\omega))\} .
$$

Let \mathcal{K} be the set of all functions $a: \Omega \rightarrow M$ such that for some element $\boldsymbol{b} \in \widehat{\mathcal{K}}$, we have

$$
\mu\left(\left\{\omega \in \Omega: a(\omega)=h_{\omega}\left(\boldsymbol{b}_{\omega}\right)\right\}\right)=1
$$

We claim that for each $a \in \mathcal{K}$ there is a unique element $f(a) \in \widehat{\mathcal{K}}$ such that

$$
\mu\left(\left\{\omega \in \Omega: a(\omega)=h_{\omega}\left(f(a)_{\omega}\right)\right\}\right)=1
$$

The existence of $f(a)$ is guaranteed by the definition of \mathcal{K}. To prove uniqueness, suppose $\boldsymbol{b}, \boldsymbol{d} \in \widehat{\mathcal{K}}$ and

$$
\mu\left(\left\{\omega \in \Omega: a(\omega)=h_{\omega}\left(\boldsymbol{b}_{\omega}\right)\right\}\right)=\mu\left(\left\{\omega \in \Omega: a(\omega)=h_{\omega}\left(\boldsymbol{d}_{\omega}\right)\right\}\right)=1 .
$$

Then

$$
\mu\left(\left\{\omega \in \Omega: h_{\omega}\left(\boldsymbol{b}_{\omega}\right)=h_{\omega}\left(\boldsymbol{d}_{\omega}\right)\right\}\right)=1,
$$

so

$$
\mu(\llbracket \boldsymbol{b}=\boldsymbol{d} \rrbracket)=\mu\left(\left\{\omega \in \Omega: \boldsymbol{b}_{\omega}=\boldsymbol{d}_{\omega}\right\}\right)=1,
$$

and hence $d_{\mathbb{K}}(\boldsymbol{b}, \boldsymbol{d})=0$. Since $d_{\mathbb{K}}$ is a metric on $\widehat{\mathcal{K}}$, it follows that $\boldsymbol{b}=\boldsymbol{d}$.
We now make some observations about the mapping $f: \mathcal{K} \rightarrow \widehat{\mathcal{K}}$. This mapping sends \mathcal{K} onto $\widehat{\mathcal{K}}$, because for each $\boldsymbol{b} \in \widehat{\mathcal{K}}$, we have $f(a)=\boldsymbol{b}$ where a is the element of \mathcal{K} such that $a(\omega)=h_{\omega}\left(\boldsymbol{b}_{\omega}\right)$ for all $\omega \in \Omega$. Suppose $\vec{c} \in \mathcal{K}<\mathbb{N}$ and $\overrightarrow{\boldsymbol{d}}=f(\vec{c})$. We have $\overrightarrow{\boldsymbol{d}} \in \widehat{\mathcal{K}}^{<\mathbb{N}}$ and

$$
\llbracket \psi(\overrightarrow{\boldsymbol{d}}) \rrbracket=\left\{\omega \in \Omega: \mathcal{M} \models \psi\left(h_{\omega}\left(\overrightarrow{\boldsymbol{d}}_{\omega}\right)\right)\right\} \doteq\{\omega \in \Omega: \mathcal{M} \models \psi(\vec{c}(\omega))\}=\llbracket \psi(\vec{c}) \rrbracket .
$$

Since the probability space $(\Omega, \mathcal{B}, \mu)$ is complete, $\llbracket \psi(\overrightarrow{\boldsymbol{d}}) \rrbracket \in \widehat{\mathcal{B}} \subseteq \mathcal{B}$, and $\llbracket \psi(\overrightarrow{\boldsymbol{d}}) \rrbracket \doteq \llbracket \psi(\vec{c}) \rrbracket$, we have $\llbracket \psi(\vec{c}) \rrbracket \in \mathcal{B}$ and $\llbracket \psi(\overrightarrow{\boldsymbol{d}}) \rrbracket=f(\llbracket \psi(\vec{c}) \rrbracket)$. Therefore, if $a, c \in \mathcal{K}$ and $d_{\mathbb{K}}(a, c)=0$, then $d_{\mathbb{K}}(f(a), f(c))=0$, and hence $f(a)=f(c)$. This shows that $\mathcal{P}=(\mathcal{K}, \mathcal{B})$ is a well-defined pre-complete structure for L^{R}, and that the mapping \widehat{f} that sends the equivalence class of each $\mathrm{B} \in \mathcal{B}$ to $f(\mathrm{~B})$, and the equivalence class of each $a \in \mathcal{K}$ to $f(a)$, is an isomorphism from the reduction of \mathcal{P} to \mathcal{N}.

It remains to show that \mathcal{P} is a nice randomization of \mathcal{M}. It is clear that \mathcal{P} satisfies conditions (1)-(3) in Definition 2.1.1.

Proof of (4): We have already shown that $\llbracket \psi(\vec{c}) \rrbracket \in \mathcal{B}$ for each formula $\psi(\vec{v})$ of L and each tuple \vec{c} in \mathcal{K}. For the other direction, let $\mathrm{B} \in \mathcal{B}$. By Corollary 2.1.6, there exist $a, e \in \mathcal{K}$ such that $\llbracket a \neq e \rrbracket \doteq \Omega$. We may choose a function $b \in M^{\Omega}$ such that $b(\omega)=e(\omega)$ whenever $a(\omega) \neq e(\omega)$, and $b(\omega) \neq a(\omega)$ for all $\omega \in \Omega$. Then $b \in \mathcal{K}$ and $\llbracket a \neq b \rrbracket=\Omega$. By Lemma 2.1.8, there exists $c \in \mathcal{K}$ which is a characteristic function of B with respect to a, b. Then $\llbracket c=a \rrbracket \doteq \mathrm{~B}$. Let $d \in M^{\Omega}$ be the function such that $d(\omega)=a(\omega)$ for $\omega \in \mathrm{B}$, and $d(\omega)=b(\omega)$ for $\omega \in \neg \mathbf{B}$. Then $\mu(\llbracket c=d \rrbracket)=1$, so $d \in \mathcal{K}$, and $\llbracket a=d \rrbracket=\mathrm{B}$. Thus (4) holds with ψ being the sentence $a=d$.

Proof of (5): Consider a formula $\theta(u, \vec{v})$ of L and a tuple \vec{b} in \mathcal{K}. By Fullness, there exists $c \in \mathcal{K}$ such that

$$
\llbracket \theta(c, \vec{b}) \rrbracket \doteq \llbracket(\exists u) \theta(u, \vec{b}) \rrbracket .
$$

We may choose a function $a \in M^{\Omega}$ such that for all $\omega \in \Omega$,

$$
\mathcal{M} \models[\theta(c(\omega), \vec{b}(\omega)) \leftrightarrow(\exists u) \theta(u, \vec{b})] \text { implies } a(\omega)=c(\omega)
$$

and

$$
\mathcal{M} \models[(\exists u) \theta(u, \vec{b}(\omega)) \rightarrow \theta(a(\omega), \vec{b}(\omega))]
$$

Then $\mu(\llbracket a=c \rrbracket)=1$, so $a \in \mathcal{K}$ and

$$
\llbracket \theta(a, \vec{b}) \rrbracket=\llbracket(\exists u) \theta(u, \vec{b}) \rrbracket,
$$

as required.
Proof of (6) and (7): By Fact 2.1.4, the properties

$$
(\forall x)(\forall y) d_{\mathbb{K}}(x, y)=\mu(\llbracket x \neq y \rrbracket), \quad(\forall \mathrm{U})(\forall \mathrm{V}) d_{\mathbb{B}}(\mathrm{U}, \mathrm{~V})=\mu(\mathrm{U} \triangle \mathrm{~V})
$$

hold in some model of T^{R}. By Fact 2.1.3, these properties hold in all models of T^{R}, and thus in \mathcal{N}. Therefore (6) and (7) hold for \mathcal{P}.
2.2. Types and Definability. For a first order structure \mathcal{M} and a set A of elements of $\mathcal{M}, \mathcal{M}_{A}$ denotes the structure formed by adding a new constant symbol to \mathcal{M} for each $a \in A$. The type realized by a tuple \vec{b} over the parameter set A in \mathcal{M} is the set $\operatorname{tp}^{\mathcal{M}}(\vec{b} / A)$ of formulas $\varphi(\vec{u}, \vec{a})$ with $\vec{a} \in A^{<\mathbb{N}}$ satisfied by \vec{b} in \mathcal{M}_{A}. We call $\operatorname{tp}^{\mathcal{M}}(\vec{b} / A)$ an n-type if $n=|\vec{b}|$.

In the following, let \mathcal{N} be a continuous structure and let A be a set of elements of $\mathcal{N} . \mathcal{N}_{A}$ denotes the structure formed by adding a new constant symbol to \mathcal{N} for each $a \in A$. The type $\operatorname{tp}^{\mathcal{N}}(\vec{b} / A)$ realized by \vec{b} over the parameter set A in \mathcal{N} is the function p from formulas to $[0,1]$ such that for each formula $\Phi(\vec{x}, \vec{a})$ with $\vec{a} \in A^{<\mathbb{N}}$, we have $\Phi(\vec{x}, \vec{a})^{p}=\Phi(\vec{b}, \vec{a})^{\mathcal{N}}$.

We now recall the notions of definable element and algebraic element from [BBHU]. An element b is definable over A in \mathcal{N}, in symbols $b \in \operatorname{dcl}^{\mathcal{N}}(A)$, if there is a sequence of formulas $\left\langle\Phi_{k}\left(x, \vec{a}_{k}\right)\right\rangle$ with $\vec{a}_{k} \in A^{<\mathbb{N}}$ such that the sequence of functions $\left\langle\Phi_{k}\left(x, \vec{a}_{k}\right)^{\mathcal{N}}\right\rangle$ converges uniformly in x to the distance function $d(x, b)^{\mathcal{N}}$ of the corresponding sort. b is algebraic over A in \mathcal{N}, in symbols $b \in \operatorname{acl}^{\mathcal{N}}(A)$, if there is a compact set C and a sequence of formulas $\left\langle\Phi_{k}\left(x, \vec{a}_{k}\right)\right\rangle$ with $\vec{a}_{k} \in A^{<\mathbb{N}}$ such that $b \in C$ and the sequence of functions $\left\langle\Phi_{k}\left(x, \vec{a}_{k}\right)^{\mathcal{N}}\right\rangle$ converges uniformly in x to the distance function $d(x, C)^{\mathcal{N}}$ of the corresponding sort.

If the structure \mathcal{N} is clear from the context, we will sometimes drop the superscript and write tp, dcl, acl instead of $\operatorname{tp}^{\mathcal{N}}, \operatorname{dcl}^{\mathcal{N}}, \operatorname{acl}^{\mathcal{N}}$.

Fact 2.2.1. ([BBHU], Exercises 10.7 and 10.10) For each element b of \mathcal{N}, the following are equivalent, where $p=\operatorname{tp}^{\mathcal{N}}(b / A)$:
(1) b is definable over A in \mathcal{N};
(2) in each model $\mathcal{N}^{\prime} \succ \mathcal{N}, b$ is the a unique element that realizes p over A
(3) b is definable over some countable subset of A in \mathcal{N}.

Fact 2.2.2. ([BBHU], Exercise 10.8 and 10.11) For each element b of \mathcal{N}, the following are equivalent, where $p=\operatorname{tp}^{\mathcal{N}}(b / A)$:
(1) b is algebraic over A in \mathcal{N};
(2) in each model $\mathcal{N}^{\prime} \succ \mathcal{N}$, the set of elements b that realize p over A in \mathcal{N}^{\prime} is compact.
(3) b is algebraic over some countable subset of A in \mathcal{N}.

Fact 2.2.3. (Definable Closure, Exercises 10.10 and 10.11 in [BBHU])
(1) If $A \subseteq \mathcal{N}$ then $\operatorname{dcl}(A)=\operatorname{dcl}(\operatorname{dcl}(A))$ and $\operatorname{acl}(A)=\operatorname{acl}(\operatorname{acl}(A))$.
(2) If A is a dense subset of B and $B \subseteq \mathcal{N}$, then $\operatorname{dcl}(A)=\operatorname{dcl}(B)$ and $\operatorname{acl}(A)=\operatorname{acl}(B)$.
It follows that for any $A \subseteq \mathcal{N}, \operatorname{dcl}(A)$ and $\operatorname{acl}(A)$ are closed with respect to the metric in \mathcal{N}.

We now turn to the case where \mathcal{N} is a model of T^{R}. In that case, a set of elements of \mathcal{N} may contain elements of both sorts \mathbb{K}, \mathbb{B}. But as we will now explain, we need only consider definability over sets of parameters of sort \mathbb{K}.

Remark 2.2.4. Let $\mathcal{N}=(\widehat{\mathcal{K}}, \widehat{\mathcal{B}})$ be a model of T^{R}. Since every model of T has at least two elements, \mathcal{N} has a pair of elements a, b of sort \mathbb{K} such that $\mathcal{N} \vDash \llbracket a=b \rrbracket=\perp$. For each event $\mathrm{D} \in \widehat{\mathcal{B}}$, let 1_{D} be the characteristic function of D with respect to a, b. Then in the model \mathcal{N}, D is definable over $\left\{a, b, 1_{\mathrm{D}}\right\}$, and 1_{D} is definable over $\{a, b, \mathrm{D}\}$.

Proof. By Fact 2.2.1.
In view of Remark 2.2.4 and Fact 2.2.3, if C is a set of parameters in \mathcal{N} of both sorts, and there are elements $a, b \in C$ such that $\mathcal{N} \vDash \llbracket a=b \rrbracket=\perp$, then an element of either sort is definable over C if and only if it is definable over the set of parameters of sort \mathbb{K} obtained by replacing each element of C of sort \mathbb{B} by its characteristic function with respect to a, b. For this reason, in a model \mathcal{N} of T^{R} we will only consider definability over sets of parameters of sort \mathbb{K}. We write $\operatorname{dcl}_{\mathbb{B}}(A)$ for the set of elements of sort \mathbb{B} that are definable over A in \mathcal{N}, and write $\operatorname{dcl}(A)$ for the set of elements of sort \mathbb{K} that are definable over A in \mathcal{N}. Similarly for $\operatorname{acl}_{\mathbb{B}}(A)$ and $\operatorname{acl}(A)$.
2.3. Conventions and Notation. We will assume hereafter that $\mathcal{N}=$ $(\widehat{\mathcal{K}}, \widehat{\mathcal{B}})$ is a model of $T^{R}, \mathcal{P}=(\mathcal{K}, \mathcal{B})$ is a nice randomization of a model $\mathcal{M} \equiv T$ with probability space $(\Omega, \mathcal{B}, \mu)$, and \mathcal{N} is the reduction of \mathcal{P}. The existence of \mathcal{P} is guaranteed by Proposition 2.1.10.

We will use boldfaced letters $\boldsymbol{a}, \boldsymbol{b}, \ldots$ for elements of $\widehat{\mathcal{K}}$. For each element $\boldsymbol{a} \in \widehat{\mathcal{K}}$, we will choose once and for all an element $a \in \mathcal{K}$ such that the image of a under the reduction map is \boldsymbol{a}. It follows that for each first order formula $\varphi(\vec{v}), \llbracket \varphi(\overrightarrow{\boldsymbol{a}}) \rrbracket$ is the image of $\llbracket \varphi(\vec{a}) \rrbracket$ under the reduction map. For any countable set $A \subseteq \widehat{\mathcal{K}}$ and each $\omega \in \Omega$, we define

$$
A(\omega)=\{a(\omega): \boldsymbol{a} \in A\}
$$

When $A \subseteq \widehat{\mathcal{K}}, \operatorname{cl}(A)$ denotes the closure of A in the metric $d_{\mathbb{K}}$. When $B \subseteq \widehat{\mathcal{B}}, \operatorname{cl}(B)$ denotes the closure of B in the metric $d_{\mathbb{B}}$, and $\sigma(B)$ denotes the smallest σ-subalgebra of $\widehat{\mathcal{B}}$ containing B.

3. Randomizations of Arbitrary Theories

3.1. Definability in Sort \mathbb{B}. We characterize the set of elements of $\widehat{\mathcal{B}}$ that are definable in \mathcal{N} over a set of parameters $A \subseteq \widehat{\mathcal{K}}$.
Definition 3.1.1. For each $A \subseteq \widehat{\mathcal{K}}$, we say that an event E is first order definable over A, in symbols $\mathrm{E} \in \operatorname{fdcl}_{\mathbb{B}}(A)$, if $\mathrm{E}=\llbracket \varphi(\overrightarrow{\boldsymbol{a}}) \rrbracket$ for some first order formula $\varphi(\vec{v})$ and tuple $\overrightarrow{\boldsymbol{a}}$ in $A^{<\mathbb{N}}$.
Theorem 3.1.2. For each $A \subseteq \widehat{\mathcal{K}}, \operatorname{dcl}_{\mathbb{B}}(A)=\operatorname{cl}\left(\operatorname{fdcl}_{\mathbb{B}}(A)\right)=\sigma\left(\operatorname{fdcl}_{\mathbb{B}}(A)\right)$.
Proof. By quantifier elimination (Fact 2.1.7), in any elementary extension $\mathcal{N}^{\prime} \succ \mathcal{N}$, two events have the same type over A if and only if they have the same type over $\operatorname{fdcl}_{\mathbb{B}}(A)$. Then by Fact $2.2 .1, \operatorname{dcl}_{\mathbb{B}}(A)=\operatorname{dcl}_{\mathbb{B}}\left(\operatorname{fdcl}_{\mathbb{B}}(A)\right)$. Moreover, $\operatorname{dcl}_{\mathbb{B}}\left(\operatorname{fdc}_{\mathbb{B}}(A)\right)$ is equal to the definable closure of $\operatorname{fdcl}_{\mathbb{B}}(A)$ in the pure measured algebra $(\widehat{\mathcal{B}}, \mu)$. By Observation 16.7 in [BBHU], the definable closure of $\operatorname{fdcl}_{\mathbb{B}}(A)$ in $(\widehat{\mathcal{B}}, \mu)$ is equal to $\sigma\left(\operatorname{fdcl}_{\mathbb{B}}(A)\right)$, so $\operatorname{dcl}_{\mathbb{B}}(A)=$ $\sigma\left(\operatorname{fdcl}_{\mathbb{B}}(A)\right)$. Since $\operatorname{fdcl}_{\mathbb{B}}(A)$ is a Boolean subalgebra of $\widehat{\mathcal{B}}, \operatorname{cl}^{(}\left(\operatorname{fdcl}_{\mathbb{B}}(A)\right)$ is a Boolean subalgebra of $\widehat{\mathcal{B}}$. By metric completeness, $\left.\operatorname{cl}^{\left(\operatorname{fdcl}_{\mathbb{B}}\right.}(A)\right)$ is a σ-algebra and $\sigma\left(\operatorname{fdcl}_{\mathbb{B}}(A)\right)$ is closed, so $\operatorname{cl}\left(\operatorname{fdcl}_{\mathbb{B}}(A)\right)=\sigma\left(\operatorname{fdcl}_{\mathbb{B}}(A)\right)$.
Corollary 3.1.3. The only events that are definable without parameters in \mathcal{N} are \top and \perp.
Proof. For every first order sentence φ, either $T \models \varphi$ and $T^{R} \models \llbracket \varphi \rrbracket=\top$, or $T \models \neg \varphi$ and $T^{R} \models \llbracket \varphi \rrbracket=\perp$. So $\operatorname{fdcl}_{\mathbb{B}}(\emptyset)=\{\top, \perp\}$.
3.2. First Order and Pointwise Definability. To prepare the way for a characterization of the definable elements of sort \mathbb{K}, we introduce two auxiliary notions, one that is stronger than definability in sort \mathbb{K} and one that is weaker than definability in sort \mathbb{K}. We will work in the nice randomization $\mathcal{P}=(\mathcal{K}, \mathcal{B})$ of \mathcal{M}, and let A be a subset of $\widehat{\mathcal{K}}$ and \boldsymbol{b} be an element of $\widehat{\mathcal{K}}$.

Definition 3.2.1. A first order formula $\varphi(u, \vec{v})$ is functional if

$$
T \models(\forall \vec{v})\left(\exists{ }^{\leq 1} u\right) \varphi(u, \vec{v}) .
$$

We say that \boldsymbol{b} is first order definable on E over A if there is a functional formula $\varphi(u, \vec{v})$ and a tuple $\overrightarrow{\boldsymbol{a}} \in A^{<\mathbb{N}}$ such that $\mathrm{E}=\llbracket \varphi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket$.

We say that \boldsymbol{b} is first order definable over A, in symbols $\boldsymbol{b} \in \operatorname{fdcl}(A)$, if \boldsymbol{b} is first order definable on \top over A.

Remarks 3.2.2. \boldsymbol{b} is first order definable over A if and only if there is a first order formula $\varphi(u, \vec{v})$ and a tuple $\overrightarrow{\boldsymbol{a}}$ from A such that

$$
\mu(\llbracket(\forall u)(\varphi(u, \overrightarrow{\boldsymbol{a}}) \leftrightarrow u=\boldsymbol{b}) \rrbracket)=1
$$

First order definability has finite character, that is, \boldsymbol{b} is first order definable over A if and only if \boldsymbol{b} is first order definable over some finite subset of A.

If \boldsymbol{b} is first order definable on E over A, then E is first order definable over $A \cup\{\boldsymbol{b}\}$.

If \boldsymbol{b} is first order definable on D over A, and E is first order definable over $A \cup\{\boldsymbol{b}\}$, then \boldsymbol{b} is first order definable on $\mathrm{D} \sqcap \mathrm{E}$ over A.

Lemma 3.2.3. If \boldsymbol{b} is first order definable over A then \boldsymbol{b} is definable over A in \mathcal{N}. Thus $\operatorname{fdcl}(A) \subseteq \operatorname{dcl}(A)$.
Proof. Let $\mathcal{N}^{\prime} \succ \mathcal{N}$ and suppose that $\operatorname{tp}^{\mathcal{N}^{\prime}}(\boldsymbol{b})=\operatorname{tp}^{\mathcal{N}^{\prime}}(\boldsymbol{d})$. Then

$$
\llbracket \varphi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket=\llbracket \varphi(\boldsymbol{d}, \overrightarrow{\boldsymbol{a}}) \rrbracket=\top .
$$

Since φ is functional,

$$
\llbracket(\forall t)(\forall u)(\varphi(t, \overrightarrow{\boldsymbol{a}}) \wedge \varphi(u, \overrightarrow{\boldsymbol{a}}) \rightarrow t=u) \rrbracket=\top .
$$

Then $\llbracket \boldsymbol{b}=\boldsymbol{d} \rrbracket=\top$, so $\boldsymbol{b}=\boldsymbol{d}$, and by Fact $2.2 .1, \boldsymbol{b} \in \operatorname{dcl}(A)$.
Definition 3.2.4. When A is countable, we define

$$
\llbracket b \in \operatorname{dcl}^{\mathcal{M}}(A) \rrbracket:=\left\{\omega \in \Omega: b(\omega) \in \operatorname{dcl}^{\mathcal{M}}(A(\omega))\right\}
$$

Lemma 3.2.5. If A is countable, then

$$
\llbracket b \in \operatorname{dcl}^{\mathcal{M}}(A) \rrbracket=\bigcup\left\{\llbracket \theta(b, \vec{a}) \rrbracket: \theta(u, \vec{v}) \text { functional, } \overrightarrow{\boldsymbol{a}} \in A^{<\mathbb{N}}\right\}
$$

and $\llbracket b \in \operatorname{dcl}^{\mathcal{M}}(A) \rrbracket \in \mathcal{B}$.
Proof. Note that for every first order formula $\theta(u, \vec{v})$, the formula

$$
\theta(u, \vec{v}) \wedge(\exists \leq 1 u) \theta(u, \vec{v})
$$

is functional. Therefore $\omega \in \llbracket b \in \operatorname{dcl}^{\mathcal{M}}(A) \rrbracket$ if and only if $b(\omega) \in \operatorname{dcl}^{\mathcal{M}}(A(\omega))$, and this holds if and only if there is a functional formula $\theta(u, \vec{v})$ and a tuple $\overrightarrow{\boldsymbol{a}} \in A^{<\mathbb{N}}$ such that $\mathcal{M} \models \theta(b(\omega), \vec{a}(\omega))$. Since A and L are countable, $\llbracket b \in \operatorname{dcl}^{\mathcal{M}}(A) \rrbracket$ is the union of countably many events in \mathcal{B}, and thus belongs to \mathcal{B}.

Definition 3.2.6. When A is countable, we say that \boldsymbol{b} is pointwise definable over A if

$$
\mu\left(\llbracket b \in \operatorname{dcl}^{\mathcal{M}}(A) \rrbracket\right)=1
$$

Corollary 3.2.7. If A is countable, then \boldsymbol{b} is pointwise definable over A if and only if there is a function f on Ω such that:
(1) For each $\omega \in \Omega, f(\omega)$ is a pair $\left\langle\theta_{\omega}(u, \vec{v}), \vec{a}_{\omega}\right\rangle$ where $\theta_{\omega}(u, \vec{v})$ is functional and $\vec{a}_{\omega} \in A^{|\vec{v}|}$;
(2) f is $\sigma\left(\operatorname{fdcl}_{\mathbb{B}}(A)\right)$-measurable (i.e., the inverse image of each point belongs to $\left.\sigma\left(\operatorname{fdcl}_{\mathbb{B}}(A)\right)\right)$;
(3) $\mathcal{M}=\theta_{\omega}\left(b(\omega), \vec{a}_{\omega}(\omega)\right)$ for almost every $\omega \in \Omega$.

Proof. If $\omega \in \llbracket b \in \operatorname{dcl}^{\mathcal{M}}(A) \rrbracket$, let $f(\omega)$ be the first pair $\left\langle\theta_{\omega}, \vec{a}_{\omega}\right\rangle$ such that $\theta_{\omega}(u, \vec{v})$ is functional, $\vec{a}_{\omega} \in A^{|\vec{v}|}$, and $\mathcal{M} \models \theta_{\omega}\left(b(\omega), \vec{a}_{\omega}(\omega)\right)$. Otherwise let $f(\omega)=\langle\perp, \emptyset\rangle$. The result then follows from Lemma 3.2.5.
Lemma 3.2.8. If \boldsymbol{b} is definable over A in \mathcal{N}, then \boldsymbol{b} is pointwise definable over some countable subset of A.

Proof. By Fact 2.2.1 (3), we may assume that A is countable. By Lemma 3.2 .5 , the measure $r:=\mu\left(\llbracket b \in \operatorname{dcl}^{\mathcal{M}}(A) \rrbracket\right)$ exists. Suppose \boldsymbol{b} is not pointwise definable over A. Then $r<1$. For each finite collection $\chi_{1}(u, \vec{v}), \ldots, \chi_{n}(u, \vec{v})$ of first order formulas, each tuple $\overrightarrow{\boldsymbol{a}} \in A^{<\mathbb{N}}$, and each $\omega \in \Omega \backslash \llbracket b \in \operatorname{dcl}^{\mathcal{M}}(A) \rrbracket$, the sentence

$$
(\exists u)\left[u \neq b(\omega) \wedge \bigwedge_{i=1}^{n}\left[\chi_{i}(b(\omega), \vec{a}(\omega)) \leftrightarrow \chi_{i}(u, \vec{a}(\omega))\right]\right.
$$

holds in \mathcal{M}, because $b(\omega)$ is not definable over $A(\omega)$. Therefore in \mathcal{P} we have

$$
\mu \llbracket(\exists u)\left[u \neq b \wedge \bigwedge_{i=1}^{n}\left[\chi_{i}(b, \vec{a}) \leftrightarrow \chi_{i}(u, \vec{a}) \rrbracket \rrbracket \geq 1-r .\right.\right.
$$

By condition 2.1.1 (5), there is an element $\boldsymbol{d} \in \widehat{\mathcal{K}}$ such that

$$
\mu \llbracket d \neq b \wedge \bigwedge_{i=1}^{n}\left[\chi_{i}(b, \vec{a}) \leftrightarrow \chi_{i}(d, \vec{a})\right] \rrbracket \geq 1-r
$$

It follows that $\mu(\llbracket d \neq b \rrbracket) \geq 1-r$, and $\llbracket \chi_{i}(b, \vec{a}) \rrbracket \doteq \llbracket \chi_{i}(d, \vec{a}) \rrbracket$ for each $i \leq n$. By compactness, in some elementary extension of \mathcal{N} there is an element \boldsymbol{d} such that $\mu \llbracket \boldsymbol{d} \neq \boldsymbol{b} \rrbracket \geq 1-r$, and $\llbracket \chi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket=\llbracket \chi(\boldsymbol{d}, \overrightarrow{\boldsymbol{a}}) \rrbracket$ for each first order formula $\chi(u, \vec{v})$. Then $\boldsymbol{d} \neq \boldsymbol{b}$, and by quantifier elimination, $\operatorname{tp}(\boldsymbol{d} / A)=\operatorname{tp}(\boldsymbol{b} / A)$. Hence by Fact 2.2.1 $(2), \boldsymbol{b} \notin \operatorname{dcl}(A)$.

The following example shows that the converse of Lemma 3.2.8 fails badly.
Example 3.2.9. Let \mathcal{M} be a finite structure with a constant symbol for every element. Then every element of \mathcal{K} is pointwise definable without parameters, but the only elements of $\widehat{\mathcal{K}}$ that are definable without parameters are the equivalence classes of constant functions $b: \Omega \rightarrow \mathcal{M}$.
3.3. Definability in Sort \mathbb{K}. We will now give necessary and sufficient conditions for an element of $\boldsymbol{b} \in \widehat{\mathcal{K}}$ to be definable over a parameter set $A \subseteq \widehat{K}$ in \mathcal{N}.

Theorem 3.3.1. \boldsymbol{b} is definable over A if and only if there exist pairwise disjoint events $\left\{\mathrm{E}_{n}: n \in \mathbb{N}\right\}$ such that $\sum_{n \in \mathbb{N}} \mu\left(\mathrm{E}_{n}\right)=1$, and for each n, E_{n} is definable over A, and \boldsymbol{b} is first order definable on E_{n} over A.

Proof. (\Rightarrow) : Suppose $\boldsymbol{b} \in \operatorname{dcl}(A)$. By Lemma 3.2.8, \boldsymbol{b} is pointwise definable over some countable subset A_{0} of A. The set of all events C such that \boldsymbol{b} is first order definable on C over A_{0} is countable, and may be arranged in a list $\left\{\mathrm{C}_{n}: n \in \mathbb{N}\right\}$. Let $\mathrm{E}_{0}=\mathrm{C}_{0}$, and

$$
\mathrm{E}_{n+1}=\mathrm{C}_{n+1} \sqcap \neg\left(\mathrm{C}_{0} \sqcup \cdots \sqcup \mathrm{C}_{n}\right) .
$$

The events E_{n} are pairwise disjoint, and for each n we have

$$
\mathrm{E}_{0} \sqcup \cdots \sqcup \mathrm{E}_{n}=\mathrm{C}_{0} \sqcup \cdots \sqcup \mathrm{C}_{n} .
$$

By Remarks 3.2.2, for each n, \boldsymbol{b} is first order definable on E_{n} over A. By Lemma 3.2.5 and pointwise definability,

$$
\sum_{n \in \mathbb{N}} \mu\left(\mathrm{E}_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(\mathrm{C}_{0} \sqcup \cdots \sqcup \mathrm{C}_{n}\right)=\mu\left(\llbracket \operatorname{dcl}^{\mathcal{M}}\left(A_{0}\right) \rrbracket\right)=1
$$

By Remarks 3.2.2, E_{n} is definable over $A \cup\{\boldsymbol{b}\}$, and since \boldsymbol{b} is definable over A, E_{n} is definable over A by Fact 2.2.3.
(\Leftarrow) : Let E_{n} be as in the theorem. For each n, we have $\mathrm{E}_{n}=\llbracket \theta_{n}\left(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}_{n}\right) \rrbracket$ for some functional formula θ_{n} and tuple $\overrightarrow{\boldsymbol{a}}_{n} \in A^{<\mathbb{N}}$. Since E_{n} is definable over A, by Theorem 3.1.2 there is a sequence of formulas $\psi_{k}(\vec{v})$ and tuples $\overrightarrow{\boldsymbol{a}_{k}} \in A^{<\mathbb{N}}$ such that

$$
\lim _{k \rightarrow \infty} d_{\mathbb{B}}\left(\llbracket \psi_{k}\left(\overrightarrow{\boldsymbol{a}}_{k}\right) \rrbracket, \llbracket \theta_{n}(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket\right)=0
$$

Suppose \boldsymbol{d} has the same type over A as \boldsymbol{b} in some elementary extension \mathcal{N}^{\prime} of \mathcal{N}. Then

$$
\lim _{k \rightarrow \infty} d_{\mathbb{B}}\left(\llbracket \psi_{k}\left(\overrightarrow{\boldsymbol{a}}_{k}\right) \rrbracket, \llbracket \theta_{n}(\boldsymbol{d}, \overrightarrow{\boldsymbol{a}}) \rrbracket\right)=0
$$

Hence

$$
\llbracket \theta_{n}\left(\boldsymbol{d}, \overrightarrow{\boldsymbol{a}}_{n}\right) \rrbracket=\llbracket \theta_{n}\left(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}_{n}\right) \rrbracket=\mathrm{E}_{n}
$$

in \mathcal{N}^{\prime}. Since $\theta_{n}(u, \vec{v})$ is functional, we have $\llbracket \theta_{n}(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket \sqsubseteq \llbracket \boldsymbol{d}=\boldsymbol{b} \rrbracket$ for each n. Then

$$
\mu(\llbracket \boldsymbol{d}=\boldsymbol{b} \rrbracket) \geq \sum_{n \in \mathbb{N}} \mu\left(\mathrm{E}_{n}\right)=1
$$

so $\boldsymbol{d}=\boldsymbol{b}$. Then by Fact $2.2 .1, \boldsymbol{b} \in \operatorname{dcl}(A)$.
Corollary 3.3.2. An element $\boldsymbol{b} \in \widehat{\mathcal{K}}$ is definable without parameters if and only if \boldsymbol{b} is first order definable without parameters. Thus $\operatorname{dcl}(\emptyset)=\operatorname{fdcl}(\emptyset)$.

Proof. (\Rightarrow) : Suppose $\boldsymbol{b} \in \operatorname{dcl}(\emptyset)$. By Theorem 3.3.1, there is an event E such that $\mu(E)>0, E$ is definable without parameters, and \boldsymbol{b} is first order definable on E without parameters. By Corollary 3.1.3 we have $E=T$, so \boldsymbol{b} is first order definable without parameters.
(\Leftarrow) : By Lemma 3.2.3.
Corollary 3.3.3. If $\operatorname{fdcl}_{\mathbb{B}}(A)$ is finite, then $\operatorname{dcl}_{\mathbb{B}}(A)=\operatorname{fdcl}_{\mathbb{B}}(A)$ and $\operatorname{dcl}(A)=$ $\mathrm{fdcl}(A)$.

Proof. $\operatorname{dcl}_{\mathbb{B}}(A)=\operatorname{fdcl}_{\mathbb{B}}(A)$ follows from Theorem 3.1.2. Lemma 3.2.3 gives $\operatorname{dcl}(A) \supseteq \operatorname{fdcl}(A)$. For the other inclusion, suppose $\boldsymbol{b} \in \operatorname{dcl}(A)$. By Theorem 3.3.1, there is a finite partition $\mathrm{E}_{0}, \ldots, \mathrm{E}_{k}$ of \top, a tuple $\overrightarrow{\boldsymbol{a}} \in A^{<\mathbb{N}}$, and first order formulas $\psi_{i}(\vec{v})$ such that $\mathbf{E}_{i}=\llbracket \psi_{i}(\overrightarrow{\boldsymbol{a}}) \rrbracket$ and \boldsymbol{b} is first order definable on E_{i}. Then there are functional formulas $\varphi_{i}(u, \vec{v})$ such that $\mathrm{E}_{i} \doteq \llbracket \varphi_{i}(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket$. We may take the formulas $\psi_{i}(\vec{v})$ to be pairwise inconsistent and such that
$T \models \bigvee_{i=0}^{n} \psi(\vec{v})$. Then $\bigwedge_{i=0}^{n}\left(\psi_{i}(\vec{v}) \rightarrow \varphi_{i}(u, \vec{v})\right)$ is a functional formula such that

$$
\llbracket \bigwedge_{i=0}^{n}\left(\psi_{i}(\overrightarrow{\boldsymbol{a}}) \rightarrow \varphi_{i}(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}})\right) \rrbracket=\top
$$

so \boldsymbol{b} is first order definable over A.
Corollary 3.3.4. \boldsymbol{b} is definable over A if and only if:
(1) \boldsymbol{b} is pointwise definable over some countable subset of A;
(2) for each functional formula $\varphi(u, \vec{v})$ and tuple $\overrightarrow{\boldsymbol{a}} \in A^{<\mathbb{N}}, \llbracket \varphi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket$ is definable over A.
Proof. (\Rightarrow) : Suppose $\boldsymbol{b} \in \operatorname{dcl}(A)$. Then (1) holds by Lemma 3.2.8. $\llbracket \varphi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket$ is obviously definable over $A \cup\{\boldsymbol{b}\}$, so $\llbracket \varphi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket$ is definable over A by Fact 2.2.3, and thus (2) holds.
(\Leftarrow) : Assume conditions (1) and (2). By (1) and Lemma 3.2.5, there is a sequence of functional formulas $\theta_{n}(u, \vec{v})$ and tuples $\overrightarrow{\boldsymbol{a}}_{n} \in A^{<\mathbb{N}}$ such that

$$
\llbracket b \in \operatorname{dcl}^{\mathcal{M}}(A) \rrbracket=\bigcup_{n \in \mathbb{N}} \llbracket \theta_{n}\left(b, \vec{a}_{n}\right) \rrbracket \doteq \Omega
$$

Let $\mathrm{E}_{n}=\llbracket \theta_{n}\left(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}_{n}\right) \rrbracket$, so \boldsymbol{b} is first order definable on E_{n} over A. By Remark 3.2.2, we may take the E_{n} to be pairwise disjoint, and thus $\sum_{n \in \mathbb{N}} \mu\left(\mathrm{E}_{n}\right)=1$. By (2), E_{n} is definable over A for each n. Then by Theorem 3.3.1, $\boldsymbol{b} \in$ $\operatorname{dcl}(A)$.

Corollary 3.3.5. b is definable over A if and only if:
(1) b is pointwise definable over some countable subset of A;
(2) $\operatorname{fdcl}_{\mathbb{B}}(A \cup\{\boldsymbol{b}\}) \subseteq \operatorname{dcl}_{\mathbb{B}}(A)$.

Theorem 3.3.6. \boldsymbol{b} is definable over A if and only if $\boldsymbol{b}=\lim _{m \rightarrow \infty} \boldsymbol{b}_{m}$, where each \boldsymbol{b}_{m} is first-order definable over A. Thus $\operatorname{dcl}(A)=\operatorname{cl}(\operatorname{fdcl}(A))$.
Proof. (\Rightarrow) : Suppose that $\boldsymbol{b} \in \operatorname{dcl}(A)$. If A is empty, then \boldsymbol{b} is already first order definable from A by Corollary 3.3.2. Assume A is not empty and let $\boldsymbol{c} \in$ A. Let $\left\{\mathrm{E}_{n}: n \in \mathbb{N}\right\}$ be as in Theorem 3.3.1, and fix an $\varepsilon>0$. Then for some $n, \sum_{k=0}^{n} \mu\left(\mathrm{E}_{k}\right)>1-\varepsilon$. For each k, E_{k} is definable over A, so by Theorem 3.1.2, there is an event $\mathrm{D}_{k} \in \operatorname{fdcl}_{\mathbb{B}}(A)$ such that $\mu\left(\mathrm{D}_{k} \triangle \mathrm{E}_{k}\right)<\varepsilon / n$. Since the events E_{k} are pairwise disjoint, we may also take the events D_{k} to be pairwise disjoint. We have $\mathrm{E}_{k}=\llbracket \theta_{k}\left(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}_{k}\right) \rrbracket$ for some functional $\theta_{k}(u, \vec{v})$, so we may assume that D_{k} has the additional properties that $\mathrm{D}_{k} \sqsubseteq \llbracket(\exists!u) \theta_{k}\left(u, \overrightarrow{\boldsymbol{a}}_{k}\right) \rrbracket$, and that $\mathbf{D}_{k}=\llbracket \psi_{k}\left(\overrightarrow{\boldsymbol{a}}_{k}\right) \rrbracket$ for some formula $\psi_{k}(\vec{v})$. Then there is a unique element $\boldsymbol{d} \in \widehat{\mathcal{K}}$ such that

$$
\begin{cases}\mathcal{M}=\theta_{k}\left(d(\omega), \vec{a}_{k}(\omega)\right) & \text { if } k \leq n \text { and } \omega \in \llbracket \psi_{k}\left(\vec{a}_{k}\right) \rrbracket \\ d(\omega)=c(\omega) & \text { if } \omega \in \Omega \backslash \bigcup_{k=0}^{n} \llbracket \psi_{k}\left(\vec{a}_{k}\right) \rrbracket\end{cases}
$$

Then \boldsymbol{d} is first order definable over A, and $d_{\mathbb{K}}(\boldsymbol{b}, \boldsymbol{d})<\varepsilon$.
(\Leftarrow) : This follows because first order definability implies definability (Lemma 3.2.3) and the set $\operatorname{dcl}(A)$ is metrically closed (Fact 2.2.3 (2)).

The following result was proved in [Be] by an indirect argument using Lascar types. We give a simple direct proof here.
Proposition 3.3.7. For any model $\mathcal{N}=(\widehat{\mathcal{K}}, \widehat{\mathcal{B}})$ of T^{R} and set $A \subseteq \widehat{\mathcal{K}}$, $\operatorname{acl}_{\mathbb{B}}(A)=\operatorname{dcl}_{\mathbb{B}}(A)$ and $\operatorname{acl}(A)=\operatorname{dcl}(A)$.

Proof. By Facts 2.2 .1 and 2.2.2, we may assume \mathcal{N} is \aleph_{1}-saturated and A is countable. Suppose an event $\mathrm{E} \in \widehat{\mathcal{B}}$ is not definable over A. By Fact 2.2 .1 and \aleph_{1}-saturation there exists $\mathrm{D} \in \widehat{\mathcal{B}}$ such that $\operatorname{tp}(\mathrm{D} / A)=\operatorname{tp}(\mathrm{E} / A)$ but $d_{\mathbb{B}}(\mathrm{D}, \mathrm{E})>0$. By \aleph_{1}-saturation again, there is a countable sequence of events $\left\langle\mathrm{F}_{n}: n \in \mathbb{N}\right\rangle$ in $\widehat{\mathcal{B}}$ such that

$$
\mu\left(\mathrm{C} \cap \mathrm{~F}_{n}\right)=\mu\left(\mathrm{C} \backslash \mathrm{~F}_{n}\right)=\mu(\mathrm{C}) / 2
$$

for each n and each event C in the Boolean algebra generated by

$$
\operatorname{fdcl}_{\mathbb{B}}(A) \cup\{\mathrm{D}, \mathrm{E}\} \cup\left\{\mathrm{F}_{k}: k<n\right\} .
$$

For each n, let

$$
\mathrm{D}_{n}=\left(\mathrm{D} \cap \mathrm{~F}_{n}\right) \cup\left(\mathrm{E} \backslash \mathrm{~F}_{n}\right)
$$

Then for each $C \in \operatorname{fdcl}_{\mathbb{B}}(A)$ and $n \in \mathbb{N}$, we have

$$
\mu\left(\mathrm{D}_{n} \cap \mathrm{C}\right)=\mu(\mathrm{D} \cap \mathrm{C}) / 2+\mu(\mathrm{E} \cap \mathrm{C}) / 2=\mu(\mathrm{E} \cap \mathrm{C})
$$

By quantifier elimination, $\operatorname{tp}\left(\mathrm{D}_{n} / A\right)=\operatorname{tp}(\mathrm{E} / A)$ for each $n \in \mathbb{N}$. Moreover, whenever $k<n$ we have

$$
\mathrm{D}_{n} \backslash \mathrm{D}_{k}=\left(\left(\mathrm{D} \backslash \mathrm{D}_{k}\right) \cap \mathrm{F}_{n}\right) \cup\left(\left(\mathrm{E} \backslash \mathrm{D}_{k}\right) \backslash \mathrm{F}_{n}\right)
$$

so

$$
\mu\left(\mathrm{D}_{n} \backslash \mathrm{D}_{k}\right)=\mu\left(\mathrm{D} \backslash \mathrm{D}_{k}\right) / 2+\mu\left(\mathrm{E} \backslash \mathrm{D}_{k}\right) / 2
$$

Note that whenever $\operatorname{tp}\left(\mathrm{D}^{\prime} / A\right)=\operatorname{tp}\left(\mathrm{D}^{\prime \prime} / A\right)$, we have $\mu\left(\mathrm{D}^{\prime}\right)=\mu\left(\mathrm{D}^{\prime \prime}\right)$, and hence

$$
\mu\left(\mathrm{D}^{\prime} \backslash \mathrm{D}^{\prime \prime}\right)=\mu\left(\mathrm{D}^{\prime \prime} \backslash \mathrm{D}^{\prime}\right)=d_{\mathbb{B}}\left(\mathrm{D}^{\prime}, \mathrm{D}^{\prime \prime}\right) / 2
$$

Therefore

$$
d_{\mathbb{B}}\left(\mathrm{D}_{n}, \mathrm{D}_{k}\right)=d_{\mathbb{B}}\left(\mathrm{D}, \mathrm{D}_{k}\right) / 2+d_{\mathbb{B}}\left(\mathrm{E}, \mathrm{D}_{k}\right) / 2 \geq d_{\mathbb{B}}(\mathrm{D}, \mathrm{E}) / 2
$$

It follows that the set of realizations of $\operatorname{tp}(E / A)$ is not compact, and E is not algebraic over A. This shows that $\operatorname{acl}_{\mathbb{B}}(A)=\operatorname{dcl}_{\mathbb{B}}(A)$.

Now suppose $\boldsymbol{b} \in \operatorname{acl}(A) \backslash \operatorname{dcl}(A)$. There is an element $\boldsymbol{c} \in \widehat{\mathcal{K}}$ such that $\operatorname{tp}(\boldsymbol{b} / A)=\operatorname{tp}(\boldsymbol{c} / A)$ but $d_{\mathbb{K}}(\boldsymbol{b}, \boldsymbol{c})>0$. For each first order formula $\psi(u, \vec{v})$ and $\overrightarrow{\boldsymbol{a}} \in A^{<\mathbb{N}}, \llbracket \psi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket \in \operatorname{acl}_{\mathbb{B}}(\{\boldsymbol{b}\} \cup A) \subseteq \operatorname{acl}_{\mathbb{B}}(\operatorname{acl}(A))$. By Fact 2.2.3, $\llbracket \psi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket \in \operatorname{acl}_{\mathbb{B}}(A)$. By the preceding paragraph, $\llbracket \psi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket \in \operatorname{dcl}_{\mathbb{B}}(A)$. Since $\operatorname{tp}(\boldsymbol{b} / A)=\operatorname{tp}(\boldsymbol{c} / A)$, we have $\operatorname{tp}(\llbracket \psi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket / A)=\operatorname{tp}(\llbracket \psi(\boldsymbol{c}, \overrightarrow{\boldsymbol{a}}) \rrbracket / A)$. By Fact 2.2.1, it follows that $\llbracket \psi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket=\llbracket \psi(\boldsymbol{c}, \overrightarrow{\boldsymbol{a}}) \rrbracket$ for every first order formula $\psi(u, \vec{v})$. Then $\operatorname{tp}(b(\omega) / A(\omega))=\operatorname{tp}(c(\omega) / A(\omega))$ for μ-almost all ω. By $\aleph_{1^{-}}$ saturation, there are countably many independent events $D_{n} \in \widehat{\mathcal{B}}$ such that $\mathrm{D}_{n} \sqsubseteq \llbracket \boldsymbol{b} \neq \boldsymbol{c} \rrbracket$ and $\mu\left(\mathrm{D}_{n}\right)=d_{\mathbb{K}}(\boldsymbol{b}, \boldsymbol{c}) / 2$. Let \boldsymbol{c}_{n} agree with \boldsymbol{c} on D_{n} and agree with \boldsymbol{b} elsewhere. We have $\operatorname{tp}\left(\boldsymbol{c}_{n} / A\right)=\operatorname{tp}(\boldsymbol{b} / A)$ for every $n \in \mathbb{N}$, and
$d_{\mathbb{K}}\left(\boldsymbol{c}_{n}, \boldsymbol{c}_{k}\right)=d_{\mathbb{K}}(\boldsymbol{b}, \boldsymbol{c}) / 2$ whenever $k<n$. Thus the set of realizations of $\operatorname{tp}(\boldsymbol{b} / A)$ is not compact, contradicting the fact that $\boldsymbol{b} \in \operatorname{acl}(A)$.

4. A Special Case: \aleph_{0}-Categorical Theories

4.1. Definability and \aleph_{0}-Categoricity. We use our preceding results to characterize \aleph_{0}-categorical theories in terms of definability in randomizations.

Theorem 4.1.1. The following are equivalent:
(1) T is \aleph_{0}-categorical;
(2) $\operatorname{fdcl}_{\mathbb{B}}(A)$ is finite for every finite A;
(3) $\operatorname{dcl}_{\mathbb{B}}(A)$ is finite for every finite A;
(4) $\operatorname{fdcl}_{\mathbb{B}}(A)=\operatorname{dcl}_{\mathbb{B}}(A)$ for every finite A;
(5) $\operatorname{fdcl}(A)$ is finite for every finite A;
(6) $\operatorname{dcl}(A)$ is finite for every finite A.
(7) $\operatorname{fdcl}(A)=\operatorname{dcl}(A)$ for every finite A;

Proof. By the Ryll-Nardzewski Theorem (see [CK], Theorem 2.3.13), (1) is equivalent to
(0) For each n there are only finitely many formulas in n variables up to T-equivalence.

Assume (0) and let $A \subseteq \widehat{\mathcal{K}}$ be finite. Then (2) holds. Moreover, there are only finitely many functional formulas in $|A|+1$ variables, so (5) holds. Then by Corollary $3.3 .3,(3),(4),(6)$, and (7) hold.

Now assume that (0) fails.
Proof that (2) and (3) fail: For some n there are infinitely many formulas in n variables that are not T-equivalent. Hence there is an n-type p in T without parameters that is not isolated. So there are formulas $\varphi_{1}(\vec{v}), \varphi_{2}(\vec{v}), \ldots$ in p such that for each $k>0, T \equiv \varphi_{k+1} \rightarrow \varphi_{k}$ but the formula $\theta_{k}=\varphi_{k} \wedge \neg \varphi_{k+1}$ is consistent with T. The formulas θ_{k} are consistent but pairwise inconsistent. By Fullness, for each $k>0$ there exists an n-tuple $\overrightarrow{\boldsymbol{b}}_{k} \in \widehat{\mathcal{K}}^{n}$ such that $\llbracket \theta_{k}\left(\overrightarrow{\boldsymbol{b}}_{k}\right) \rrbracket=\top$. Since the measured algebra $(\widehat{\mathcal{B}}, \mu)$ is atomless, there are pairwise disjoint events $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots$ in $\widehat{\mathcal{B}}$ such that $\mu\left(\mathrm{E}_{k}\right)=2^{-k}$ for each $k>0$. By applying Lemma 2.1.8 k times, we see that for each $k>0$ there is an n-tuple $\overrightarrow{\boldsymbol{a}}_{k} \in \widehat{\mathcal{K}}^{n}$ that agrees with $\overrightarrow{\boldsymbol{b}}_{i}$ on E_{i} whenever $0<i \leq k$. Whenever $0<k \leq j$, we have $\mu\left(\llbracket \overrightarrow{\boldsymbol{a}}_{k}=\overrightarrow{\boldsymbol{a}}_{j} \rrbracket\right) \geq 1-2^{-k}$. So $\left\langle\overrightarrow{\boldsymbol{a}}_{1}, \overrightarrow{\boldsymbol{a}}_{2}, \ldots\right\rangle$ is a Cauchy sequence, and by metric completeness the limit $\overrightarrow{\boldsymbol{a}}=\lim _{k \rightarrow \infty} \overrightarrow{\boldsymbol{a}}_{k}$ exists in $\widehat{\mathcal{K}}^{n}$. Let $A=\operatorname{range}(\overrightarrow{\boldsymbol{a}})$. For each $k>0$ we have $\mathrm{E}_{k}=\llbracket \overrightarrow{\boldsymbol{a}}=\overrightarrow{\boldsymbol{b}}_{k} \rrbracket=\llbracket \theta_{k}(\overrightarrow{\boldsymbol{a}}) \rrbracket$, so $\mathrm{E}_{k} \in \mathrm{fdcl}_{\mathbb{B}}(A)$. Thus $\mathrm{fdcl}_{\mathbb{B}}(A)$ is infinite, so (2) fails and (3) fails.

Proof that (4) fails: Let E_{k} be as in the preceding paragraph. The set $\operatorname{fdcl}_{\mathbb{B}}(A)$ is countable. But the closure $\operatorname{cl}\left(\operatorname{fdcl}_{\mathbb{B}}(A)\right)$ is uncountable, because for each set $S \subseteq \mathbb{N} \backslash\{0\}$, the supremum $\bigsqcup_{k \in S} \mathrm{E}_{k}$ belongs to $\operatorname{cl}\left(\operatorname{fdcl}_{\mathbb{B}}(A)\right)$. Thus by Theorem 3.1.2,

$$
\operatorname{dcl}_{\mathbb{B}}(A)=\operatorname{cl}\left(\operatorname{fdcl}_{\mathbb{B}}(A)\right) \neq \operatorname{fdcl}_{\mathbb{B}}(A),
$$

and (4) fails.
Proof that (5), (6), and (7) fail: By Corollary 2.1.6, there exist $\boldsymbol{c}, \boldsymbol{d} \in \mathcal{K}$ such that $\llbracket \boldsymbol{c} \neq \boldsymbol{d} \rrbracket=\top$. Let C be the finite set $C=A \cup\{\boldsymbol{c}, \boldsymbol{d}\}$. By Remark 2.2.4, for any event $\mathrm{D} \in \operatorname{fdcl}_{\mathbb{B}}(A)$, the characteristic function 1_{D} of D with respect to $\boldsymbol{c}, \boldsymbol{d}$ is definable over C. Moreover, we always have $d_{\mathbb{K}}\left(1_{\mathrm{D}}, 1_{\mathrm{E}}\right)=d_{\mathbb{B}}(\mathrm{D}, \mathrm{E})$. It follows that $\mathrm{fdcl}(C)$ is infinite, so (5) and (6) fail. To show that (7) fails, we take an event $\mathrm{D} \in \operatorname{dcl}_{\mathbb{B}}(A) \backslash \operatorname{fdcl}_{\mathbb{B}}(A)$. By Theorem 3.1.2 we have $\mathrm{D} \in \operatorname{cl}\left(\operatorname{fdcl}_{\mathbb{B}}(A)\right)$. It follows that $1_{\mathrm{D}} \in \operatorname{cl}(\operatorname{fdcl}(C))$, so by Theorem 3.3.6, $1_{\mathrm{D}} \in \operatorname{dcl}(C)$. Hence $\operatorname{dcl}(C)$ is uncountable. But $\operatorname{fdcl}(C)$ is countable, so (7) fails.

By the Ryll-Nardzewski Theorem, if T is \aleph_{0}-categorical then for each n, T has finitely many n-types; so each type p in the variables (u, \vec{v}) has an isolating formula, that is, a formula $\varphi(u, \vec{v})$ such that $T \models \varphi(u, \vec{v}) \leftrightarrow \bigwedge p$.

We now characterize the definable closure of a finite set $A \subseteq \widehat{\mathcal{K}}$ in the case that T is \aleph_{0}-categorical. Hereafter, when A is a finite subset of $\widehat{\mathcal{K}}, \overrightarrow{\boldsymbol{a}}$ will denote a finite tuple whose range is A.
Corollary 4.1.2. Suppose that T is \aleph_{0}-categorical, $\boldsymbol{b} \in \widehat{\mathcal{K}}$, and A is a finite subset of $\widehat{\mathcal{K}}$. Then $\boldsymbol{b} \in \operatorname{dcl}(A)$ if and only if:
(1) \boldsymbol{b} is pointwise definable over A;
(2) for every isolating formula $\varphi(u, \vec{v})$, if $\mu(\llbracket \varphi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket)>0$ then

$$
\llbracket \varphi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket=\llbracket(\exists u) \varphi(u, \overrightarrow{\boldsymbol{a}}) \rrbracket .
$$

Proof. (\Rightarrow) : Suppose $\boldsymbol{b} \in \operatorname{dcl}(A)$. (1) holds by Lemma 3.2.8. Suppose $\varphi(u, \vec{v})$ is isolating and $\mu(\llbracket \varphi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket)>0$. We have $\llbracket \varphi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket \in \operatorname{fdcl}_{\mathbb{B}}(\{\boldsymbol{b}\} \cup A)$, so by Corollary 3.3.5, $\llbracket \varphi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket \in \operatorname{dcl}_{\mathbb{B}}(A)$. By Theorem 4.1.1, $\llbracket \varphi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket \in$ $\operatorname{fdcl}_{\mathbb{B}}(A)$. We note that $(\exists u) \varphi(u, \vec{v})$ is an isolating formula, so $\llbracket(\exists u) \varphi(u, \overrightarrow{\boldsymbol{a}}) \rrbracket$ is an atom of $\operatorname{fdcl}_{\mathbb{B}}(A)$. Therefore (2) holds.
(\Leftarrow) : Assume (1) and (2). By (2), for every isolating formula $\varphi(u, \vec{v})$ such that $\mu(\llbracket \varphi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket)>0$, we have

$$
\llbracket \varphi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket \in \operatorname{fdcl}_{\mathbb{B}}(A) .
$$

Every formula $\theta(u, \vec{v})$ is T-equivalent to a finite disjunction of isolating formulas in the variables (u, \vec{v}). It follows that $\operatorname{fdcl}_{\mathbb{B}}(A \cup\{\boldsymbol{b}\}) \subseteq \operatorname{fdcl}_{\mathbb{B}}(A)$. Therefore by Corollary 3.3.5, $\boldsymbol{b} \in \operatorname{dcl}(A)$.
Corollary 4.1.3. Suppose that T is \aleph_{0}-categorical, $\boldsymbol{b} \in \widehat{\mathcal{K}}$, and A is a finite subset of $\widehat{\mathcal{K}}$. Then $\boldsymbol{b} \in \operatorname{dcl}(A)$ if and only if for every isolating formula $\psi(\vec{v})$ there is a functional formula $\varphi(u, \vec{v})$ such that $\llbracket \psi(\overrightarrow{\boldsymbol{a}}) \rrbracket \sqsubseteq \llbracket \varphi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket$.

Proof. (\Rightarrow) : Suppose $\boldsymbol{b} \in \operatorname{dcl}(A)$. By Theorem 4.1.1, \boldsymbol{b} is first order definable over $\overrightarrow{\boldsymbol{a}}$, so there is a functional formula $\varphi(u, \vec{v})$ such that $\llbracket \varphi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket=\top$. Then for every isolating $\psi(\vec{v})$ we have $\llbracket \psi(\overrightarrow{\boldsymbol{a}}) \rrbracket \sqsubseteq \llbracket \varphi(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket$.
(\Leftarrow) : There is a finite set $\left\{\psi_{0}(\vec{v}), \ldots, \psi_{k}(\vec{v})\right\}$ that contains exactly one isolating formula for each $|\overrightarrow{\boldsymbol{a}}|$-type of T. By hypothesis, for each $i \leq k$ there is a functional formula $\varphi_{i}(u, \vec{v})$ such that $\llbracket \psi_{i}(\overrightarrow{\boldsymbol{a}}) \rrbracket \sqsubseteq \llbracket \varphi_{i}(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}}) \rrbracket$. Since the
formulas $\psi_{i}(\vec{v})$ are pairwise inconsistent, the formula $\bigvee_{i=0}^{k}\left(\psi_{i}(\vec{v}) \wedge \varphi_{i}(u, \vec{v})\right)$ is functional, and

$$
\llbracket \bigvee_{i=0}^{k}\left(\psi_{i}(\overrightarrow{\boldsymbol{a}}) \wedge \varphi_{i}(\boldsymbol{b}, \overrightarrow{\boldsymbol{a}})\right) \rrbracket=\top
$$

Hence \boldsymbol{b} is first order definable over \boldsymbol{a}, so by Lemma 3.2 .3 we have $\boldsymbol{b} \in$ $\operatorname{dcl}(A)$.
4.2. The Theory DLO^{R}. We will use Corollary 4.1 .3 to give a more natural characterization of the definable closure of a finite parameter set in a model of DLO^{R}, where DLO is the theory of dense linear order without endpoints. Note that in DLO, every type in $\left(v_{1}, \ldots, v_{n}\right)$ has an isolating formula of the form $\bigwedge_{i=1}^{n-1} u_{i} \alpha_{i} u_{i+1}$ where $\left\{u_{1}, \ldots u_{n}\right\}=\left\{v_{1}, \ldots, v_{n}\right\}$ and each $\alpha_{i} \in\{<,=\}$. (This formula linearly orders the equality-equivalence classes).
Corollary 4.2.1. Let $T=\mathrm{DLO}, \boldsymbol{b} \in \widehat{\mathcal{K}}$, and A be a finite subset of $\widehat{\mathcal{K}}$. Then $\boldsymbol{b} \in \operatorname{dcl}(A)$ if and only if for every isolating formula $\psi\left(v_{1}, \ldots, v_{n}\right)$ there is an $i \in\{1, \ldots, n\}$ such that $\llbracket \psi(\overrightarrow{\boldsymbol{a}}) \rrbracket \sqsubseteq \llbracket \boldsymbol{b}=\boldsymbol{a}_{i} \rrbracket$.
Proof. For any $\mathcal{M}=\mathrm{DLO}$ and parameter set A, we have $\operatorname{dcl}^{\mathcal{M}}(A)=A$. Therefore for every isolating formula $\psi\left(v_{1}, \ldots, v_{n}\right)$ and functional formula $\varphi\left(u, v_{1}, \ldots, v_{n}\right)$ there exists $i \in\{1, \ldots, n\}$ such that

$$
\mathrm{DLO} \models\left(\psi\left(v_{1}, \ldots, v_{n}\right) \wedge \varphi\left(u, v_{1}, \ldots, v_{n}\right)\right) \rightarrow u=v_{i} .
$$

The result now follows from Corollary 4.1.3.
In the theory DLO , we define $\min (u, v)$ and $\max (u, v)$ in the usual way. For $\boldsymbol{a}, \boldsymbol{b} \in \widehat{\mathcal{K}}$, we let $\min (\boldsymbol{a}, \boldsymbol{b})$ be the unique element $\boldsymbol{e} \in \widehat{\mathcal{K}}$ such that

$$
\llbracket e=\min (a, b) \rrbracket=\top
$$

and similarly for max. For finite subsets A of $\widehat{\mathcal{K}}, \min (A)$ and $\max (A)$ are defined by repeating the two-variable functions min and max in the natural way.

We next show that in DLO^{R}, the definable closure of a finite set can be characterized as the closure under a "choosing function" of four variables.

Definition 4.2.2. In the theory DLO, let ℓ be the function of four variables defined by the condition

$$
\ell(u, v, x, y)=x \text { if } u<v, \text { and } \ell(u, v, x, y)=y \text { if not } u<v
$$

For $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d} \in \mathcal{K}$, let $\ell(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d})$ be the unique element $\boldsymbol{e} \in \widehat{\mathcal{K}}$ such that $\llbracket e=\ell(a, b, c, d) \rrbracket=\top$. Given a set $A \subseteq \widehat{\mathcal{K}}$, let $\operatorname{lcl}(A)$ be the closure of A under the function ℓ.

Note that in DLO, the function ℓ is definable without parameters. In both DLO and $\mathrm{DLO}^{R}, \min (u, v)=\ell(u, v, u, v)$, and $\max (u, v)=\ell(u, v, v, u)$.
Proposition 4.2.3. Let $T=\mathrm{DLO}$. Then for every finite subset A of $\widehat{\mathcal{K}}$, $\operatorname{dcl}(A)=\operatorname{lcl}(A)$.

Proof. It is clear that $\operatorname{lcl}(A) \subseteq \operatorname{dcl}(A)$.
We prove the other inclusion. If A is empty, the result is trivial, so we assume A is non-empty. Let $\mathbf{0}=\min (A), \mathbf{1}=\max (A)$. We have $\mathbf{0}, \mathbf{1} \in$ $\operatorname{lcl}(A)$. Let $\Omega_{0}=\llbracket 0<1 \rrbracket$. Note that $\Omega \backslash \Omega_{0}=\llbracket 0=1 \rrbracket$. If $\mu\left(\Omega_{0}\right)=0$, then A is a singleton, and we trivially have $\operatorname{lcl}(A)=\operatorname{dcl}(A)=A$. We may therefore assume that $\mu\left(\Omega_{0}\right)>0$. To simplify notation we will instead assume that $\Omega_{0}=\Omega$; the argument in the general case is similar.
In the following, all characteristic functions are understood to be with respect to $\mathbf{0}, \mathbf{1}$. Note that $\ell(\boldsymbol{a}, \boldsymbol{b}, \mathbf{0}, \mathbf{1})$ is the characteristic function of the event $\llbracket \boldsymbol{a}<\boldsymbol{b} \rrbracket$. If \boldsymbol{d} is the characteristic function of an event D and \boldsymbol{e} is the characteristic function of an event E, then $\ell(\boldsymbol{d}, \mathbf{1}, \mathbf{1}, \mathbf{0})$ is the characteristic function of $\neg \mathrm{D}, \min (\boldsymbol{d}, \boldsymbol{e})$ is the characteristic function of $\mathrm{D} \sqcap \mathrm{E}$, and $\max (\boldsymbol{d}, \boldsymbol{e})$ is the characteristic function of $\mathrm{D} \sqcup \mathrm{E}$. It follows that for every quantifier-free first order formula $\varphi(\vec{v})$ of DLO with $|\vec{v}|=|\overrightarrow{\boldsymbol{a}}|$, the characteristic function of the event $\llbracket \varphi(\overrightarrow{\boldsymbol{a}}) \rrbracket$ belongs to $\operatorname{lcl}(A)$. Since DLO admits quantifier elimination, the characteristic function of every event that is first order definable over A belongs to $\operatorname{lcl}(A)$. Hence by Theorem 4.1.1, the characteristic function of every event in $\operatorname{dcl}_{\mathbb{B}}(A)$ belongs to $\operatorname{lcl}(A)$. Moreover, for every $\boldsymbol{c} \in A$ and event $\mathrm{D} \in \operatorname{dcl}_{\mathbb{B}}(A)$ with characteristic function $\boldsymbol{d}, \boldsymbol{c} \upharpoonright \mathrm{D}:=\ell(\boldsymbol{d}, \mathbf{1}, \mathbf{0}, \boldsymbol{c})$ is the element that agrees with \boldsymbol{c} on D and agrees with $\mathbf{0}$ on the complement of D , so $\boldsymbol{c} \upharpoonright \mathrm{D}$ belongs to $\operatorname{lcl}(A)$. Let $\left\{\mathrm{D}_{1}, \ldots, \mathrm{D}_{n}\right\}$ be the set of atoms of $\operatorname{dcl}_{\mathbb{B}}(A)$ (which is finite because DLO is \aleph_{0}-categorical). By Corollary 4.2.1, every element of $\operatorname{dcl}(A)$ has the form

$$
\max \left(\boldsymbol{c}_{1} \upharpoonright \mathrm{D}_{1}, \ldots, \boldsymbol{c}_{n} \upharpoonright \mathrm{D}_{n}\right)
$$

for some $\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{n} \in A$. Therefore $\operatorname{dcl}(A) \subseteq \operatorname{lcl}(A)$.
Example 4.2.4. In this example we show that the exchange property fails for DLO^{R}, even though it holds for DLO. Thus the exchange property is not preserved under randomizations. Let $T=$ DLO. By Fullness, there exist elements $\boldsymbol{a}, \boldsymbol{b} \in \widehat{\mathcal{K}}$ such that $\max (\boldsymbol{a}, \boldsymbol{b}) \notin\{\boldsymbol{a}, \boldsymbol{b}\}$. Let $\boldsymbol{c}=\max (\boldsymbol{a}, \boldsymbol{b}), \boldsymbol{d}=$ $\min (\boldsymbol{a}, \boldsymbol{b})$. It is easy to check that

$$
\operatorname{dcl}(\{\boldsymbol{a}, \boldsymbol{b}\})=\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}\}, \quad \operatorname{dcl}(\{\boldsymbol{a}, \boldsymbol{c}\})=\{\boldsymbol{a}, \boldsymbol{c}\}, \quad \operatorname{dcl}(\{\boldsymbol{a}\})=\{\boldsymbol{a}\} .
$$

Thus $\boldsymbol{c} \in \operatorname{dcl}(\{\boldsymbol{a}, \boldsymbol{b}\}) \backslash \operatorname{dcl}(\{\boldsymbol{a}\})$ but $\boldsymbol{b} \notin \operatorname{dcl}(\{\boldsymbol{a}, \boldsymbol{c}\})$.

References

[AK] Uri Andrews and H. Jerome Keisler. Randomizations of Theories with Countably Many Countable Models. To appear. Available online at www.math.wisc.edu/~Keisler.
[Be] Itaï Ben Yaacov. On Theories of Random Variables. To appear, Israel J. Math. ArXiv:0901.1584v3 (2001).
[BBHU] Itaï Ben Yaacov, Alexander Berenstein, C. Ward Henson and Alexander Usvyatsov. Model Theory for Metric Structures. To appear, Lecture Notes of the London Math. Society.
[BK] Itaï Ben Yaacov and H. Jerome Keisler. Randomizations of Models as Metric Structures. Confluentes Mathematici 1 (2009), pp. 197-223.
[BU] Itaï Ben Yaacov and Alexander Usvyatsov. Continuous first order logic and local stability. Transactions of the American Mathematical Society 362 (2010), no. 10, 5213-5259.
[CK] C.C.Chang and H. Jerome Keisler. Model Theory. Dover 2012.
[EG] Clifton Early and Isaac Goldbring. Thorn-Forking in Continuous Logic. Journal of Symbolic Logic 77 (2012), 63-93.
[Go1] Isaac Goldbring. Definable Functions in Urysohn's Metric Space. To appear, Illinois Journal of Mathematics.
[Go2] Isaac Goldbring. An Approximate Herbrand's Theorem and Definable Functions in Metric Structures. Math. Logic Quarterly 50 (2012), 208-216.
[Go3] Isaac Goldbring. Definable Operators on Hilbert Spaces. Notre Dame Journal of Formal Logic 53 (2012), 193-201.
[GL] Isaac Goldbring and Vinicius Lopes. Pseudofinite and Pseudocompact Metric Structures. To appear, Notre Dame Journal of Formal Logic. Available online at www.homepages.math.uic.edu/~isaac.
[Ke1] H. Jerome Keisler. Randomizing a Model. Advances in Math 143 (1999), 124-158.
[Ke2] H. Jerome Keisler. Separable Randomizations of Models. To appear. Available online at www.math.wisc.edu/~Keisler.

University of Wisconsin-Madison, Department of Mathematics, Madison, WI 53706-1388

E-mail address: andrews@math.wisc.edu
$U R L$: www.math.wisc.edu/~andrews
E-mail address: keisler@math.wisc.edu
$U R L$: www.math. wisc.edu/ ${ }^{\text {keisler }}$
University of Illinois at Chicago, Department of Mathematics, Statistics, and Computer Science, Science and Engineering Offices (M/C 249), 851 S. Morgan St., Chicago, IL 60607-7045, USA

E-mail address: isaac@math.uic.edu
URL: www.math.uic.edu/~isaac

[^0]: 2010 Mathematics Subject Classification. Primary 03C40. Secondary 03B48, 03B50, 03 C 35.

