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Metric Structures

I A (bounded) metric structure is a (bounded)
complete metric space (M,d), together with
distinguished elements, functions (mapping Mn into
M for various n) and predicates (mapping Mn into a
bounded interval in R for various n).

I Each function and predicate is required to be
uniformly continuous.

I For the sake of simplicity, we suppose that the metric
is bounded by 1 and the predicates all take values in
[0,1].
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Examples of Metric Structures

1. If M is a structure from classical model theory, then
we can consider M as a metric structure by
equipping it with the discrete metric. If P ⊆ Mn is a
distinguished predicate, then we consider it as a
mapping P : Mn → {0,1} ⊆ [0,1] by

P(a) = 0 if and only if M |= P(a).

2. Suppose X is a Banach space with unit ball B. Then
(B,0X , ‖ · ‖, (fα,β)α,β) is a metric structure, where
fα,β : B2 → B is given by f (x , y) = α · x + β · y for all
scalars α and β with |α|+ |β| ≤ 1.

3. If H is a Hilbert space with unit ball B, then
(B,0H , ‖ · ‖, 〈·, ·〉, (fα,β)α,β) is a metric structure.
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Bounded Continuous Signatures

I As in classical logic, a signature for continuous logic
consists of constant symbols, function symbols, and
predicate symbols, the latter two coming also with
arities.

I New to continuous logic: For every function symbol
F , the signature must specify a modulus of uniform
continuity ∆F , which is a function ∆F : (0,1]→ (0,1].
Likewise, a modulus of uniform continuity is specified
for each predicate symbol.

I The metric d is included as a (logical) predicate in
analogy with = in classical logic.
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L-structures

An L-structure is a metric structure M whose
distinguished constants, functions, and predicates are
interpretations of the corresponding symbols in L.
Moreover, the uniform continuity of the functions and
predicates is witnessed by the moduli of uniform
continuity specified by L.

e.g. If P is a unary predicate symbol, then for all ε > 0
and all x , y ∈ M, we have:

d(x , y) < ∆P(ε)⇒ |P(x)− P(y)| ≤ ε.
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Formulae

I Terms are defined as in classical logic.
I Atomic formulae are of the form d(t1, t2) and

P(t1, . . . , tn) where P is an n-ary predicate symbol
and t1, . . . , tn are terms.

I Connectives: If ϕ1, . . . , ϕn are formulae and
u : [0,1]n → [0,1] is any continuous function, then
u(ϕ1, . . . , ϕn) is a formula.

I Quantifiers: If ϕ is a formula, then so is supx ϕ and
infx ϕ. (sup “=” ∀ and inf “=” ∃)

I If ϕ(x1, . . . , xn) is an L-formula, M an L-structure, and
a1, . . . ,an elements of M, then M gives a value
ϕM(a1, . . . ,an), which is a number in [0,1] measuring
“how true” ϕ is when a1, . . . ,an are plugged in for the
free variables.



Rosiness in
Continuous Logic

Isaac Goldbring
(joint work with

Clifton Ealy)

Continuous Logic

Rosiness

The Urysohn
Sphere

Theories

I A condition is an expression of the form “ϕ = 0”,
where ϕ is a formula. If ϕ is a sentence, then the
condition “ϕ = 0” is called a closed condition.

I An L-theory is a set of closed L-conditions.
I If M is an L-structure, then the theory of M is the

theory

Th(M) := {“ϕ = 0” | ϕ a sentence, ϕM = 0}.

I An L-theory is complete if it is of the form Th(M) for
some L-structure M.
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Examples of Complete Continuous Theories

1. Infinite Dimensional Hilbert Spaces (over R)
2. Probability Structures based on Atomless Probability

Spaces
3. Lp-Banach lattices
4. Richly branching R-trees
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Stability in Continuous Logic

As in classical logic, there are many (equivalent) ways of
defining what it means for the complete continuous
theory T to be stable:

I λ-stable for some λ;
I Existence of a stable independence relation
I Types over models are definable

All four of the theories described on the previous slide are
stable. In fact, the first three are ω-stable and the last one
is κ-stable if and only if κω = κ.
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Simplicity in continuous logic

One can define dividing and simplicity in continuous logic
exactly as it was defined in classical logic:

I A type pB(x) ∈ Sx (B) does not divide over A if
whenever I is an A-indiscernible sequence with
B ∈ I, then {pB′(x) | B′ ∈ I} is consistent.

I T is simple if the relation |̂ of dividing
independence satisfies local character.
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Do There Exist Simple Continuous Theories?

I All known examples of “essentially continuous”
theories are either stable or not simple.

I Attempts to create essentially continuous simple,
unstable theories failed, e.g. adding a generic
predicate, applying the Keisler randomization
procedure...

Question of Ben-Yaacov
Do there exist any “essentially continuous” simple,
unstable theories?
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Defining |þ^

T -classical complete theory,M a monster model for T .

A |a^C
B ⇔ acl(AC) ∩ acl(BC) = acl(C).

Satisfies all axioms for a strict independence relation
except base monotonicity.

A |M^C
B ⇔ for all C′ such that C ⊆ C′ ⊆ acl(BC), we

have A |a^C′ B.
Satisfies all axioms for a strict independence relation
except local character and extension.

A |þ^C
B ⇔ for all B′ ⊇ B there is A′ ≡BC A such that

A′ |M^C
B′.
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Rosy Theories

Theorem (Adler)
|þ^ is a strict independence relation if and only if |þ^ has

local character if and only if there is a strict independence
relation for T at all. In this case, |þ^ is the weakest strict
independence relation for T , that is, if |∗^ is another strict
independence relation for T , then for all small A, B, C, we
have A |∗^C

B ⇒ A |þ^C
B.

Definition
T is rosy if and only if |þ^ is a strict independence relation
for T eq.

Example
Simple theories and o-minimal theories are rosy.
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Algebraic Closure in Continuous Logic

Suppose nowM is a monster model for the complete
continuous theory T .

Suppose a ∈M and B ⊆M is small. Then a is algebraic
over B if the set of B-conjugates of a is a (metrically)
compact subset ofM. (Equivalently, a lies in a compact
B-definable subset ofM.)

In continuous logic, if a ∈ acl(B), then there need not be
a finite B0 ⊆ B such that a ∈ acl(B0). However, there will
be a countable B0 ⊆ B such that a ∈ acl(B0); this is
because definable sets in continuous logic may need
countably many parameters for their definition.
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Strict Countable Independence Relations

Definition
|∗^ is a strict countable independence relation if it

satisfies all of the axioms for a strict independence
relation except that it satisfies countable character
instead of finite character, that is,

A |∗^
C

B ⇔ A0 |∗^
C

B for all countable A0 ⊆ A.

Theorem
Suppose that T is a complete continuous theory. Then |þ^
is a strict countable independence relation if and only if
|þ^ has local character if and only if there is a strict

countable independence relation for T at all. In this case,
|þ^ is the weakest strict countable independence relation

for T .
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Rosy Continuous Theories

We say that a continuous theory T is rosy if |þ^ is a strict
countable independence relation for T eq. (We will say
later what T eq is for continuous logic.)

By the previous theorem, simple continuous theories are
rosy.

In the rest of this talk, we aim to show that the theory of
the Urysohn sphere, which is not simple, is rosy (with
respect to finitary imaginaries).
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The Urysohn sphere

Recall that a Polish metric space is a complete, separable
metric space.

The Urysohn sphere U is the unique (up to isometry)
Polish metric space of diameter ≤ 1 which is universal (all
Polish metric spaces of diameter ≤ 1 isometrically embed
in U) and ultrahomogeneous (any isometry between finite
subsets of U extends to an isometry of U).

L-the empty metric signature (consists solely of the metric
symbol d , d ≤ 1)
TU-the L-theory of U

U-a monster model for TU
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Model Theoretic Properties of TU

Theorem (Henson)

1. TU is ℵ0-categorical;
2. TU admits QE;
3. TU is the model completion of the empty L-theory (so

is the theory of existentially closed metric spaces of
diameter ≤ 1);

4. for all A ⊆ U, we have acl(A) = A.

Thus, there appears to be an analogy between the theory
of the Urysohn sphere in continuous logic and the theory
of the infinite set in classical logic. However,...
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TU is not simple

Theorem (Pillay)
TU is not simple.

Sketch.
I Let A ⊆ U be small with all elements mutually

1
2 -apart. By QE, there is a unique type p(x)

determined by the conditions {d(x ,a) = 1
4 | a ∈ A}.

I Let B ( A be closed. We show that p divides over B,
showing that |̂ doesn’t satisfy local character in TU.

I Let a ∈ A \ B. We can find a B-indiscernible
sequence (ai | i < ω) of realizations of tp(a/B) which
are mutually 1-apart. Then d(x ,a) = 1

4 2-divides
over B.
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TU is real rosy
Theorem (Ealy, G.)
TU is real rosy, that is, |þ^ satisfies local character when
restricted to the real sort.

Sketch.

1. By the triviality of acl in TU, one can show that

A |M^
C

B ⇔ A ∩ B ⊆ C.

2. Next, show that |M^ = |þ^ in TU.

3. Suppose A,B ⊆ U are small. For x ∈ A ∩ B, let
Bx ⊆ B be countable such that x ∈ Bx . Let
B0 :=

⋃
{Bx | x ∈ A ∩ B}. Then A |þ^B0

B and

|B0| ≤ ℵ0 · |A|, showing that |þ^ satisfies local
character.
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Why |M^ = |þ^ in TU

I It suffices to show that for any small, closed
A,B,C ⊆ U, there exists A′ ≡C A with A′ |M^C

B.
I Let (ai |i ∈ I) enumerate A \ C and (bj | j ∈ J)

enumerate B \ C.
I Let εi := d(ai ,C) and δij := max{εi ,d(ai ,bj)}.
I Let

Σ(X ) := tp(A/C) ∪ {|d(xi ,bj)− δi,j | = 0 | i ∈ I, j ∈ J}.
It suffices to show that Σ is satisfiable.

I To show that Σ is satisfiable, it suffices to show that
Σ prescribes a metric on X ∪ B ∪ C.

I Check that all of the various triangle inequalities
hold. This follows from the choice of δij .



Rosiness in
Continuous Logic

Isaac Goldbring
(joint work with

Clifton Ealy)

Continuous Logic

Rosiness

The Urysohn
Sphere

An Application of Real Rosiness

By the universality of U, we know that Un isometrically
emdeds in U for any n ≥ 2. However,

Corollary
For any n ≥ 2, there is no definable isometric embedding
Un → U.

Proof.
First show that any definable isometric embedding
Un → U extends to an isometric embedding Un → U.
(This actually takes work in continuous logic!) Then show
that Uþ

real(U
n) = n and use monotonicity of Uþ

real-rank with
respect to definable injections.
One can also show that, for any n ≥ 2, there is no
A-definable injection Un → U, where A ⊆ U is finite.
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Definable Predicates

I Many issues around definability in continuous logic
revolve around the notion of a definable predicate.

I Suppose, for each n ∈ N, ϕn(x , yn) is a formula,
where the yn’s are increasing finite tuples of
variables. Then we obtain a definable predicate
P(x ,Y ) by taking the forced limit of the sequence
(ϕn(x , yn)).

I It should be viewed as a “formula” with finitely many
object variables x and countably many parameter
variables Y :=

⋃
n yn.

I If (ϕn(x , yn)) is a “fast” Cauchy sequence, then
P(x , yn) = limϕn(x , yn).

I A predicate P :Mn → [0,1] is definable if and only if
the map tp(a) 7→ P(a) : Sn(T )→ [0,1] is continuous.
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Meq in continuous logic
I As in classical logic, the eq-construction can be

viewed as adding canonical parameters for formulae
(or definable predicates in our case).

I Suppose P(x ,Y ) is a definable predicate. OnMY ,
define the pseudometric
dP(B,B′) := supx |P(x ,B)− P(x ,B′)|.

I InMeq, we add a sortMP , which is the metric space
MY/(dP = 0), as well as relevant “projection maps.”

I The elements ofMP are canonical parameters of
instances of P(x ,Y ).

I If |Y | < ω, we say that P(x ,Y ) is a finitary definable
predicate and, if P(x ,Y ) is a finitary definable
predicate, then the elements ofMP are called
finitary imaginaries.

I Mfeq is the reduct ofMeq where one only considers
finitary imaginaries.
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WEFI

Definition
We say that T has weak elimination of finitary
imaginaries, abbreviated WEFI, if for every e ∈Mfeq,
there is a finite tuple l(e) fromM such that e ∈ dcl(l(e))
and l(e) ∈ acl(e).

Equivalently, T has WEFI if and only if for every finitary
definable predicate ϕ(x), there is a finite tuple c fromM
such that ϕ(x) is definable over c and whenever ϕ(x) is
defined over a finite tuple d , then c ∈ acl(d).
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A Fact About Iso(U)

We will need the following fact in our proof that TU has
WEFI.

Theorem (J. Melleray)
Let A and B be finite subsets of U. Set G := Iso(U|A ∩ B)
and H := the subgroup of G generated by
Iso(U|A) ∪ Iso(U|B). Then H is dense in G with respect to
the topology of pointwise convergence.
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TU has WEFI
I Suppose that ϕ(x ,a) is a finitary definable predicate.
I Let b be a subtuple of a such that ϕ(x) is definable

over b and ϕ(x) is not definable over any proper
subtuple of b.

I Now suppose that ϕ(x) is definable over the finite
tuple d . Let c ∈ U. Let G := Iso(U|b∩d) and let H be
the subgroup of G generated by Iso(U|b) ∪ Aut(U|d).

I If τ ∈ H, then ϕ(τ(c)) = ϕ(c).
I If τ ∈ G, then by the above theorem, there is a

sequence (τn) from H such that τn(c)→ τ(c).
I Since ϕ is continuous, we have

ϕ(τ(c)) = ϕ(lim τn(c)) = limϕ(τn(c)) = ϕ(c).

I Thus, ϕ is defined over b ∩ d .
I By choice of b, we have b ∩ d = b, i.e. b ∈ acl(d).

Thus, we have that TU has WEFI.
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Real Rosy + WEFI⇒ Rosy w.r.t. Mfeq

In order to show that TU is rosy with respect to finitary
imaginaries, it remains to prove

Theorem (Ealy, G.)
If T is real rosy and has WEFI, then T is rosy w.r.t.
finitary imaginaries.
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Outline of the Proof
Let us outline the proof of the above theorem. Suppose
A ⊆Mfeq is small. We need to find a small cardinal κ
such that for all small D ⊆Mfeq, there is C ⊆ D with
|C| < κ and such that A |þ^C

D. Fix such a D.
I Let B be a small set of real elements whose image

under the canonical maps equals A. Let κ witness
local character for B (exists by real rosiness). We
show that this is the desired κ.

I By choice of κ, there is E ⊆ l(D) with |E | < κ and
B |þ^E

l(D).
I Let C ⊆ D be such that |C| < κ and such that

E ⊆ l(C). By base monotonicity, we have
B |þ^ l(C)

l(D).

I Show that B |þ^C
D.

I Show that A |þ^C
D.
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Superrosiness

In classical logic, a rosy theory is said to be superrosy if
any type does not þ-fork over a finite subset of its domain.
In analogy with the definition of supersimplicity in
continuous logic, we make the following definition:

Definition
Suppose T is a rosy continuous theory with monster
modelM. We say that T is superrosy if for all a ∈Meq,
all small B ⊆Meq, and all ε > 0, there is c ∈Meq, in the
same sort as a with d(a, c) < ε, and a finite B0 ⊆ B such
that c |þ^B0

B
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TU is superrosy w.r.t. Ufeq

Theorem (Ealy, G.)
TU is superrosy with respect to finitary imaginaries.

Sketch of Proof
I First fix a = (a1, . . . ,an) a finite tuple from U, B ⊆ U

small, and ε > 0.
I For each i ∈ {1, . . . ,n}, set ci := ai if ai /∈ acl(B).

Otherwise, set ci to be an element of B within ε of ai .
I Set B0 := {c1, . . . , cn} ∩ B. Then c |þ^B0

B, whence
TU is real superrosy.
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The Proof Continued

I Now suppose a ∈ Ufeq, B ⊆ Ufeq is small, and ε > 0.
I Let a′ be a representative of the equivalence class a.

Choose δ > 0 so that whenever c′ is a tuple from U
of the same kind as a′ which is within δ of a′, then
d(a, c) < ε, where c is the equivalence class of c′.

I By real superrosiness, we can find a finite tuple c′

from U of the same kind as a′ within δ of a′ and such
that c′ |þ^C

l(B) for some finite C ⊆ l(B).
I By base monotonicity, we may assume that

C = l(B0) for some finite B0 ⊆ B.
I Then, by earlier arguments, c |þ^B0

B, where c is the
equivalence class of c′.
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Questions

Question 1
Recall that we showed that Real Rosy +WEFI⇒ Rosy
w.r.t. Mfeq. This proof shows that, in classical logic, Real
Rosy + WEI⇒ Rosy. Does this have any applications in
the classical setting?

Question 2
Is TU rosy? What does T eq

U look like? Does TU (weakly)
eliminate hyperimaginaries?

Question 3
It is known that if T is a classical theory,

T simple, unstable⇒ T R not simple,

where T R stands for the Keisler randomization of T . Is it
true that T rosy implies T R rosy? This would require
having a better understanding of acl in T R.
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