The Urysohn space is rosy

Isaac Goldbring

UCLA

UC Irvine Logic Seminar February 27, 2012

Isaac Goldbring (UCLA)

The Urysohn space is rosy

Irvine February 27, 2012 1 / 36

★ ∃ →

1 Stable and Simple Theories

2 Rosy theories

3 The Urysohn space is rosy

Isaac Goldbring (UCLA)

The Urysohn space is rosy

Irvine February 27, 2012 2 / 36

Stable and Simple Theories

The Birth of Stability Theory

Theorem (Morley, 1962)

If *T* is a theory in a countable language and is κ -categorical for some $\kappa > \aleph_0$, then *T* is λ -categorical for all $\lambda > \aleph_0$. *T* is then called uncountably categorical.

The techniques used to prove this theorem marked the beginning of *stability theory*: total transcendentality (AKA ω -stability), (Morley) ranks, etc...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Classification Theory

Theorem (Baldwin-Lachlin)

If T is an uncountably categorical theory, then T has either 1 countable model or \aleph_0 many countable models.

Theorem (Shelah-1970)

If T is κ -categorical for some $\kappa > |T|$, then T is λ -categorical for all $\lambda > |T|$. (Morley's theorem for uncountable languages.)

Theorem (Shelah)

If T is unstable, then T has 2^{λ} models of cardinality λ for $\lambda > |T|$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Stable theories

Definition

T is κ -stable if for every $\mathcal{M} \models T$ and every $A \subseteq M$ with $|A| \le \kappa$, we have $|S_1(A)| \le \kappa$. *T* is said to be *stable* if it is κ -stable for some κ .

Example

The theory of the infinite set is ω -stable. Indeed, for each $a \in A$, there is a type determined by saying "x = a". There is also a type determined by saying " $x \neq a$ " for each $a \in A$. Thus, there are |A| + 1-many 1-types over A.

< ロ > < 同 > < 回 > < 回 >

Stable theories

Definition

T is κ -stable if for every $\mathcal{M} \models T$ and every $A \subseteq M$ with $|A| \leq \kappa$, we have $|S_1(A)| \leq \kappa$. *T* is said to be *stable* if it is κ -stable for some κ .

Example

The theory of the infinite set is ω -stable. Indeed, for each $a \in A$, there is a type determined by saying "x = a". There is also a type determined by saying " $x \neq a$ " for each $a \in A$. Thus, there are |A| + 1-many 1-types over A.

ヘロア 人間 アイヨア・

Stable theories (cont'd)

Example

Suppose that T = ACF. Suppose $K \models ACF$ and $A \subseteq K$. Without loss of generality, we may assume that A = k is a subfield of K. Given $p \in S_1(k)$, define $I_p := \{f(x) \in k[x] : "f(x) = 0" \in p\}$. Then $p \mapsto I_P$ is a bijection between $S_1(k)$ and the set of prime ideals in k[x]; the latter set has cardinality $|k| + \aleph_0$ since every ideal in k[x] is finitely generated by Hilbert's basis theorem.

Example

DCF is ω -stable.

Unstable theories

Example

The theory of the random graph is *not* stable. Fix κ and let $G \models T_{rg}$ be κ^+ -saturated. Then one can find κ many elements A that are not connected to each other. For $X \subseteq A$, let $p_X(x)$ be the type declaring xEa for $a \in X$ and $\neg xEa$ for $a \notin X$. Then these p_X 's are distinct, so there are 2^{κ} many types over A.

Example

o-minimal theories are not stable.

Theorem

T is unstable if and only if there is $\mathcal{M} \models T$, a formula $\varphi(x, y)$, and sequences $(a_i), (b_i)$ from *M* such that $\mathcal{M} \models \varphi(a_i, b_j) \Leftrightarrow i < j$.

ヘロト ヘ回ト ヘヨト ヘヨト

Unstable theories

Example

The theory of the random graph is *not* stable. Fix κ and let $G \models T_{rg}$ be κ^+ -saturated. Then one can find κ many elements A that are not connected to each other. For $X \subseteq A$, let $p_X(x)$ be the type declaring xEa for $a \in X$ and $\neg xEa$ for $a \notin X$. Then these p_X 's are distinct, so there are 2^{κ} many types over A.

Example

o-minimal theories are not stable.

Theorem

T is unstable if and only if there is $\mathcal{M} \models T$, a formula $\varphi(x, y)$, and sequences $(a_i), (b_i)$ from *M* such that $\mathcal{M} \models \varphi(a_i, b_j) \Leftrightarrow i < j$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Unstable theories

Example

The theory of the random graph is *not* stable. Fix κ and let $G \models T_{rg}$ be κ^+ -saturated. Then one can find κ many elements A that are not connected to each other. For $X \subseteq A$, let $p_X(x)$ be the type declaring xEa for $a \in X$ and $\neg xEa$ for $a \notin X$. Then these p_X 's are distinct, so there are 2^{κ} many types over A.

Example

o-minimal theories are not stable.

Theorem

T is unstable if and only if there is $\mathcal{M} \models T$, a formula $\varphi(x, y)$, and sequences $(a_i), (b_i)$ from *M* such that $\mathcal{M} \models \varphi(a_i, b_j) \Leftrightarrow i < j$.

Isaac Goldbring (UCLA)

э.

イロト 不得 トイヨト イヨト

Continuous Stable Theories

One can define κ -stability for continuous theories just as for classical (discrete theories). However, there is an alternate (metric) notion of κ -stability, and it is usually this notion that is referred to. Fortunately, they yield the same class of stable theories.

Examples

- 1 Infinite-dimensional Hilbert spaces (ω -stable)
- 2 Atomless probability algebras (ω -stable)
- **3** L^{p} -Banach lattice (ω -stable)
- 4 Richly branching \mathbb{R} -trees (κ -stable if and only if $\kappa^{\omega} = \kappa$)

< ロ > < 同 > < 回 > < 回 >

Continuous Stable Theories

One can define κ -stability for continuous theories just as for classical (discrete theories). However, there is an alternate (metric) notion of κ -stability, and it is usually this notion that is referred to. Fortunately, they yield the same class of stable theories.

Examples

- **1** Infinite-dimensional Hilbert spaces (ω -stable)
- **2** Atomless probability algebras (ω -stable)
- **3** L^{p} -Banach lattice (ω -stable)
- **4** Richly branching \mathbb{R} -trees (κ -stable if and only if $\kappa^{\omega} = \kappa$)

An application to functional analysis

Suppose that *M* is some separable object of functional analysis (e.g C^* -algebra, von-Neumann algebra, etc...) and \mathcal{U}, \mathcal{V} are nonprincipal ultrafilters on \mathbb{N} . Is it true that $\mathcal{M}^{\mathcal{U}} \cong \mathcal{M}^{\mathcal{V}}$? Under (CH), the answer is yes. But what about under \neg (CH).

Theorem (Hart, Farah, Sherman)

Suppose that \neg (CH) holds. Suppose that \mathcal{M} is a separable metric structure.

- If Th(*M*) is stable, then all nonprincipal ultrapowers of *M* over ℕ are isomorphic.
- 2 If $Th(\mathcal{M})$ is unstable, then there are nonprincipal ultrafilters \mathcal{U} and \mathcal{V} on \mathbb{N} such that $\mathcal{M}^{\mathcal{U}} \ncong \mathcal{M}^{\mathcal{V}}$.

 II_1 -factors are unstable as are unital C^* -algebras and their unitary groups.

An application to functional analysis

Suppose that *M* is some separable object of functional analysis (e.g C^* -algebra, von-Neumann algebra, etc...) and \mathcal{U}, \mathcal{V} are nonprincipal ultrafilters on \mathbb{N} . Is it true that $\mathcal{M}^{\mathcal{U}} \cong \mathcal{M}^{\mathcal{V}}$? Under (CH), the answer is yes. But what about under \neg (CH).

Theorem (Hart, Farah, Sherman)

Suppose that \neg (CH) holds. Suppose that \mathcal{M} is a separable metric structure.

- 1 If $Th(\mathcal{M})$ is stable, then all nonprincipal ultrapowers of \mathcal{M} over \mathbb{N} are isomorphic.
- 2 If $Th(\mathcal{M})$ is unstable, then there are nonprincipal ultrafilters \mathcal{U} and \mathcal{V} on \mathbb{N} such that $\mathcal{M}^{\mathcal{U}} \ncong \mathcal{M}^{\mathcal{V}}$.

 II_1 -factors are unstable as are unital C^* -algebras and their unitary groups.

Isaac Goldbring (UCLA)

$T_{\mathfrak{U}}$ is not stable

Remember that \mathfrak{U} denotes the Urysohn sphere and $T_{\mathfrak{U}}$ is the theory of \mathfrak{U} . In this talk, \mathbb{U} is a very saturated model of $T_{\mathfrak{U}}$. Fix a (small) cardinal λ and let A be a set of elements of \mathbb{U} of size $< \lambda$ which are pairwise distance 1 apart. Then for any $X \subseteq \lambda$, the collection of conditions

$$\Gamma_X := \{ d(x, a_i) = 1 \mid i \in X \} \cup \{ d(x, a_i) = \frac{1}{2} \mid i \notin X \}$$

is finitely satisfiable in \mathbb{U} . This yields 2^{λ} many distinct complete 1-types over *A*.

< ロ > < 同 > < 回 > < 回 >

Free extensions

Fix a theory *T* and a "*monster model*" $\mathfrak{M} \models T$ (a very saturated and homogeneous model). Throughout, *A*, *B*, *C* $\subseteq \mathfrak{M}$ are *small* in the sense that they have cardinality less than the saturation level of \mathfrak{M} . A *model* will refer to a small elementary substructure of \mathfrak{M} .

- Stable theories have a nice notion of *independence* for small subsets of m.
- The idea is A is independent from B over C, written $A \perp_C B$, if $B \cup C$ gives no more information about A than C does.
- In terms of types, we say that tp(A/BC) is a *free* or *nonforking* extension of tp(A/C).
- A very important property of this independence notion is that of *extension*, namely that if p(x) is a type over *C* and $B \supseteq C$, then *p* has a free extension to *B*.

Free extensions

Fix a theory *T* and a "*monster model*" $\mathfrak{M} \models T$ (a very saturated and homogeneous model). Throughout, *A*, *B*, *C* $\subseteq \mathfrak{M}$ are *small* in the sense that they have cardinality less than the saturation level of \mathfrak{M} . A *model* will refer to a small elementary substructure of \mathfrak{M} .

- Stable theories have a nice notion of *independence* for small subsets of M.
- The idea is A is independent from B over C, written $A \perp_C B$, if $B \cup C$ gives no more information about A than C does.
- In terms of types, we say that tp(*A*/*BC*) is a *free* or *nonforking* extension of tp(*A*/*C*).
- A very important property of this independence notion is that of *extension*, namely that if p(x) is a type over *C* and $B \supseteq C$, then *p* has a free extension to *B*.

э

11/36

Definable types

Definition

A type $p(x) \in S(A)$ is *definable* if for every formula $\varphi(x, y)$ without parameters, there is another formula $d_p\varphi(y)$ with parameters from A such that, for every $a \in A$, $\varphi(x, a) \in p \Leftrightarrow \models d_p\varphi(a)$.

Theorem

T is stable if and only if every type over a model is definable.

Suppose that *T* is stable and $p(x) \in S(M)$, where *M* is a model. If $M \subseteq B \subseteq \mathfrak{M}$, then define $q(x) = \{\varphi(x, b) : \models d_p\varphi(b), b \in B\}$. Then one can show that $q(x) \in S(B)$. In this case, q(x) is a free extension of p(x). In fact, it is the *unique* free extension of p(x) to *B*.

Isaac Goldbring (UCLA)

Definable types

Definition

A type $p(x) \in S(A)$ is *definable* if for every formula $\varphi(x, y)$ without parameters, there is another formula $d_p\varphi(y)$ with parameters from A such that, for every $a \in A$, $\varphi(x, a) \in p \Leftrightarrow \models d_p\varphi(a)$.

Theorem

T is stable if and only if every type over a model is definable.

Suppose that *T* is stable and $p(x) \in S(M)$, where *M* is a model. If $M \subseteq B \subseteq \mathfrak{M}$, then define $q(x) = \{\varphi(x, b) : \models d_p\varphi(b), b \in B\}$. Then one can show that $q(x) \in S(B)$. In this case, q(x) is a free extension of p(x). In fact, it is the *unique* free extension of p(x) to *B*.

Definable types

Definition

A type $p(x) \in S(A)$ is *definable* if for every formula $\varphi(x, y)$ without parameters, there is another formula $d_p\varphi(y)$ with parameters from A such that, for every $a \in A$, $\varphi(x, a) \in p \Leftrightarrow \models d_p\varphi(a)$.

Theorem

T is stable if and only if every type over a model is definable.

Suppose that *T* is stable and $p(x) \in S(M)$, where *M* is a model. If $M \subseteq B \subseteq \mathfrak{M}$, then define $q(x) = \{\varphi(x, b) : \models d_p\varphi(b), b \in B\}$. Then one can show that $q(x) \in S(B)$. In this case, q(x) is a free extension of p(x). In fact, it is the *unique* free extension of p(x) to *B*.

Isaac Goldbring (UCLA)

3

Stable Independence Relations

Suppose that T is stable. Then \bigcup satisfies the following properties:

- 1 Automorphism invariance
- 2 Symmetry: $A \perp_{c} B \Leftrightarrow B \perp_{c} A$
- **3** Transitivity: $A \bigsqcup_{C} BD \Leftrightarrow A \bigsqcup_{C} B$ and $A \bigsqcup_{BC} D$
- 4 Finite character: $A \bigcup_{c} B$ if and only if $a \bigcup_{c} B$ for all finite tuples a from A
- **5** Extension: for all *A*, *B*, *C*, there exists $A' \models \operatorname{tp}(A/C)$ such that $A' \bigcup_C B$
- 6 Local Character: If *a* is any finite tuple, then there is $B_0 \subseteq B$ of cardinality $\leq |T|$ such that $a \bigcup_{B_0} B$
- 7 Stationarity of Types: If tp(A/M) = tp(A'/M), $A \bigsqcup_M B$, and $A' \bigsqcup_M B$, then tp(A/MB) = tp(A'/MB).

-

Stable Independence Relations (cont'd)

Definition

Any relation \downarrow^* that satifies the properties (1)-(7) is called a *stable independence relation*.

Theorem

- **1** If *T* is stable, then there is a unique stable independence relation, namely nonforking independence.
- 2 If T admits a stable independence relation, then T is stable (and this stable independence relation must be nonforking independence).

3

Forking in ACF

- In ACF, there is a nice geometric interpretation of igcup .
- Suppose that $K \models ACF$ and $k \subseteq I \subseteq K$ are subfields.
- For a ∈ K, define RM(a/k) := d if a is the generic point of an irreducible variety V defined over k of dimension d.
- Then $a \bigsqcup_{k} I$ if and only if RM(a/k) = RM(a/I).

A combinatorial approach to forking

Definition

Suppose that $\varphi(x, a)$ is a formula and $A \subseteq \mathfrak{M}$ is small.

- 1 $\varphi(x, a)$ divides over *A* if there is an *A*-indiscernible sequence $(a_i | i < \omega)$ with tp $(a/A) = \text{tp}(a_0/A)$ such that $\{\varphi(x, a_i) | i < \omega\}$ is inconsistent.
- 2 $\varphi(x, a)$ forks over A if there are $\varphi_1(x), \ldots, \varphi_n(x)$, each of which divide over A, such that $\models \varphi(x) \rightarrow \bigvee_{i=1}^n \varphi_i(x)$.
- "Forking=negligible or smaller dimension"
- If $p(x) \in S(B)$ and $A \subseteq B$, then *p* forks over *A* if it contains a formula that forks over *A*. So *nonforking* extensions don't include any "lower-dimensional" sets which provide more information about realizations of *p* than *A*.

A combinatorial approach to forking

Definition

Suppose that $\varphi(x, a)$ is a formula and $A \subseteq \mathfrak{M}$ is small.

- 1 $\varphi(x, a)$ divides over *A* if there is an *A*-indiscernible sequence $(a_i | i < \omega)$ with $\operatorname{tp}(a/A) = \operatorname{tp}(a_0/A)$ such that $\{\varphi(x, a_i) | i < \omega\}$ is inconsistent.
- **2** $\varphi(x, a)$ forks over *A* if there are $\varphi_1(x), \ldots, \varphi_n(x)$, each of which divide over *A*, such that $\models \varphi(x) \rightarrow \bigvee_{i=1}^n \varphi_i(x)$.

"Forking=negligible or smaller dimension"

If $p(x) \in S(B)$ and $A \subseteq B$, then *p* forks over *A* if it contains a formula that forks over *A*. So *nonforking* extensions don't include any "lower-dimensional" sets which provide more information about realizations of *p* than *A*.

A combinatorial approach to forking

Definition

Suppose that $\varphi(x, a)$ is a formula and $A \subseteq \mathfrak{M}$ is small.

- 1 $\varphi(x, a)$ divides over *A* if there is an *A*-indiscernible sequence $(a_i | i < \omega)$ with $\operatorname{tp}(a/A) = \operatorname{tp}(a_0/A)$ such that $\{\varphi(x, a_i) | i < \omega\}$ is inconsistent.
- **2** $\varphi(x, a)$ forks over *A* if there are $\varphi_1(x), \ldots, \varphi_n(x)$, each of which divide over *A*, such that $\models \varphi(x) \rightarrow \bigvee_{i=1}^n \varphi_i(x)$.

"Forking=negligible or smaller dimension"

If p(x) ∈ S(B) and A ⊆ B, then p forks over A if it contains a formula that forks over A. So *nonforking* extensions don't include any "lower-dimensional" sets which provide more information about realizations of p than A.

Simple theories

Definition

T is simple if $\ \$ satisfies local character.

Example

The theory of the random graph, which is not stable, is simple.

If T is simple, then \bigcup satisfies the first six properties of a stable independence relation but stationarity of types might fail. A useful substitute is:

Theorem (Independence Theorem)

Suppose that T is simple, M is a model, and A, B \supseteq M are such that $A \bigcup_{M} B$. If $p(x) \in S(A)$ and $q(x) \in S(B)$ are nonforking extensions of p_0 , their restriction to M, then $p \cup q$ is consistent and is a nonforking extension of p_0 . (Type Amalgamation over Models)

17/36

A A DE A A E A A E A ...

Simple theories

Definition

T is simple if $\ \$ satisfies local character.

Example

The theory of the random graph, which is not stable, is simple.

If T is simple, then \bigcup satisfies the first six properties of a stable independence relation but stationarity of types might fail. A useful substitute is:

Theorem (Independence Theorem)

Suppose that T is simple, M is a model, and A, B \supseteq M are such that $A \bigcup_{M} B$. If $p(x) \in S(A)$ and $q(x) \in S(B)$ are nonforking extensions of p_0 , their restriction to M, then $p \cup q$ is consistent and is a nonforking extension of p_0 . (Type Amalgamation over Models)

Isaac Goldbring (UCLA)

The Urysohn space is rosy

Irvine February 27, 2012

17/36

日本の開きるとものもの。

Simple theories

Definition

T is simple if \bigcup satisfies local character.

Example

The theory of the random graph, which is not stable, is simple.

If T is simple, then \bigcup satisfies the first six properties of a stable independence relation but stationarity of types might fail. A useful substitute is:

Theorem (Independence Theorem)

Suppose that T is simple, M is a model, and A, B \supseteq M are such that $A \bigcup_{M} B$. If $p(x) \in S(A)$ and $q(x) \in S(B)$ are nonforking extensions of p_0 , their restriction to M, then $p \cup q$ is consistent and is a nonforking extension of p_0 . (Type Amalgamation over Models)

Characterizing simple theories

Call \downarrow^* a *simple independence relation* if \downarrow^* satisfies 1-6 and the Independence Theorem.

Theorem

If T is simple, then \bigcup is the unique simple independence relation. If T has a simple independence relation, then T is simple.

Example

For *G* a big model of the theory of the random graph, define $A \, {}_{\mathcal{C}}^* B$ if and only if $A \cap B \subseteq C$. Then $\, {}_{\mathbb{C}}^*$ is a simple independence relation and thus $\, {}_{\mathbb{C}}^*$ is the relation of nonforking independence.

$T_{\mathfrak{U}}$ is not simple

Since $T_{\mathfrak{U}}$ contains a copy of the random graph inside, maybe it is simple.

Theorem (Pillay)

 $T_{\mathfrak{U}}$ is not simple.

Sketch.

- Let $A \subseteq \mathbb{U}$ be small with all elements mutually $\frac{1}{2}$ -apart. By QE, there is a unique type p(x) determined by the conditions $\{d(x, a) = \frac{1}{4} \mid a \in A\}.$
- Let $B \subsetneq A$ be closed. We show that *p* divides over *B*, showing that \bigcup doesn't satisfy local character in $T_{\mathfrak{U}}$.

■ Let $a \in A \setminus B$. We can find a *B*-indiscernible sequence $(a_i | i < \omega)$ of realizations of tp(a/B) which are mutually 1-apart. Then " $d(x, a) = \frac{1}{4}$ " 2-divides over *B*.

Isaac Goldbring (UCLA)

$T_{\mathfrak{U}}$ is not simple

Since $T_{\mathfrak{U}}$ contains a copy of the random graph inside, maybe it is simple.

Theorem (Pillay)

 $T_{\mathfrak{U}}$ is not simple.

Sketch.

- Let $A \subseteq \mathbb{U}$ be small with all elements mutually $\frac{1}{2}$ -apart. By QE, there is a unique type p(x) determined by the conditions $\{d(x, a) = \frac{1}{4} \mid a \in A\}.$
- Let $B \subsetneq A$ be closed. We show that *p* divides over *B*, showing that \bigcup doesn't satisfy local character in $T_{\mathfrak{U}}$.

■ Let $a \in A \setminus B$. We can find a *B*-indiscernible sequence $(a_i | i < \omega)$ of realizations of tp(a/B) which are mutually 1-apart. Then " $d(x, a) = \frac{1}{4}$ " 2-divides over *B*.

Isaac Goldbring (UCLA)

DLO

Example

DLO is not simple. To see this, fix b < a < c. Then $bc extstyle _{\emptyset} a$: tp(bc/a) is determined by the formula y < a < z which doesn't divide over \emptyset . However, $a extstyle _{\emptyset} bc$. Look at the indiscernible sequence

$$b = b_0 < c = c_0 < b_1 < c_1 < b_2 < c_2 \cdots$$

Then if $\varphi(x, y, z)$ is the formula y < x < z, then $\{\varphi(x, b_i, c_i) \mid i < \omega\}$ is 2-inconsistent, so $\varphi(x, b, c)$ divides over \emptyset and is in tp(a/bc).

More generally, any o-minimal theory is not simple.

Independence in o-minimal theories

Suppose that T is o-minimal.

Definition

If $X \subseteq \mathfrak{M}^n$ is definable, then dim(X) is the dimension of the biggest open cell contained in X. If $a \in \mathfrak{M}^n$ and $A \subseteq \mathfrak{M}$, we define dim $(a/A) := \min\{\dim(X) \mid X \text{ is A-definable and } a \in X\}.$

Define $a _{C}^{o} B$ if and only if dim $(a/BC) = \dim(a/C)$. Then $_{O}^{o}$ is a very well-behaved independence relation and one can use it in many ways to mimic arguments from stability and simplicity theory.

Question

Is there a common framework for simple theories and o-minimal theories?

1 Stable and Simple Theories

2 Rosy theories

3 The Urysohn space is rosy

Isaac Goldbring (UCLA)

The Urysohn space is rosy

Irvine February 27, 2012 22 / 36

æ

Defining \downarrow^p

T-classical complete theory, \mathcal{M} a monster model for *T*.

$$A \stackrel{a}{\bigcup}_{C} B \Leftrightarrow \operatorname{acl}(AC) \cap \operatorname{acl}(BC) = \operatorname{acl}(C).$$

Satisfies all axioms for a strict independence relation except perhaps base monotonicity: If $D \subseteq C \subseteq B$ and $A \bigcup_{D} B$, then $A \bigcup_{C} B$.

 $A \bigsqcup_{C}^{M} B \Leftrightarrow$ for all C' such that $C \subseteq C' \subseteq \operatorname{acl}(BC)$, we have $A \bigsqcup_{C'}^{a} B$. Satisfies all axioms for a strict independence relation except perhaps local character and extension.

 $A \bigsqcup_{C}^{b} B \Leftrightarrow$ for all $E \supseteq BC$ there is $A' \models \operatorname{tp}(A/BC)$ such that $A' \bigsqcup_{C}^{M} E$.

Defining \bigcup^{p}

T-classical complete theory, \mathcal{M} a monster model for *T*.

$$A \stackrel{a}{\bigcup}_{C} B \Leftrightarrow \operatorname{acl}(AC) \cap \operatorname{acl}(BC) = \operatorname{acl}(C).$$

Satisfies all axioms for a strict independence relation except perhaps base monotonicity: If $D \subseteq C \subseteq B$ and $A \bigcup_{D} B$, then $A \bigcup_{C} B$.

 $A \coprod_{C}^{M} B \Leftrightarrow$ for all C' such that $C \subseteq C' \subseteq \operatorname{acl}(BC)$, we have $A \coprod_{C'}^{a} B$. Satisfies all axioms for a strict independence relation except perhaps local character and extension.

 $A \bigsqcup_{C}^{\flat} B \Leftrightarrow$ for all $E \supseteq BC$ there is $A' \models \operatorname{tp}(A/BC)$ such that $A' \bigsqcup_{C}^{M} E$.

Defining \downarrow^{\flat}

T-classical complete theory, \mathcal{M} a monster model for *T*.

$$A \stackrel{a}{\bigcup}_{C} B \Leftrightarrow \operatorname{acl}(AC) \cap \operatorname{acl}(BC) = \operatorname{acl}(C).$$

Satisfies all axioms for a strict independence relation except perhaps base monotonicity: If $D \subseteq C \subseteq B$ and $A \bigcup_{D} B$, then $A \bigcup_{C} B$.

 $A \coprod_{C}^{M} B \Leftrightarrow$ for all C' such that $C \subseteq C' \subseteq \operatorname{acl}(BC)$, we have $A \coprod_{C'}^{a} B$. Satisfies all axioms for a strict independence relation except perhaps local character and extension.

$$A igstarrow^{\flat}_{C} B \Leftrightarrow$$
 for all $E \supseteq BC$ there is $A' \models \operatorname{tp}(A/BC)$ such that $A' igstarrow^{M}_{C} E$.

イロト イ理ト イヨト イヨト

Rosy Theories

Theorem (Adler, Ealy, Onshuus)

 \bigcup^{\flat} is a strict independence relation if and only if \bigcup^{\flat} has local character if and only if there is a strict independence relation for T at all. In this case, \bigcup^{\flat} is the weakest strict independence relation for T, that is, if \bigcup^{*} is another strict independence relation for T, then for all small A, B, C, we have $A \bigcup^{*}_{c} B \Rightarrow A \bigcup^{\flat}_{c} B$.

Definition

T is rosy if and only if \bigcup^{b} is a strict independence relation for T^{eq} .

Example

Simple theories and o-minimal theories are rosy.

Isaac Goldbring (UCLA)

(日)

Rosy theories

Strict Countable Independence Relations

Definition

 \downarrow^* is a *strict countable independence relation* if it satisfies all of the axioms for a strict independence relation except that it satisfies *countable character* instead of finite character, that is,

$$A \bigsqcup_{c}^{*} B \Leftrightarrow A_0 \bigsqcup_{c}^{*} B$$
 for all countable $A_0 \subseteq A$.

Theorem

Suppose that T is a complete continuous theory. Then $[\begin{smallmatrix} b]{}^{b}$ is a strict countable independence relation if and only if $[\begin{smallmatrix} b]{}^{b}$ has local character if and only if there is a strict countable independence relation for T at all. In this case, $[\begin{smallmatrix} b]{}^{b}$ is the weakest strict countable independence relation for T.

25/36

1 Stable and Simple Theories

2 Rosy theories

3 The Urysohn space is rosy

Isaac Goldbring (UCLA)

The Urysohn space is rosy

Irvine February 27, 2012 26 / 36

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$T_{\mathfrak{U}}$ is real rosy

Theorem (Ealy, G.)

 $T_{\mathfrak{U}}$ is real rosy, that is, $\bigcup^{\mathfrak{p}}$ satisfies local character when restricted to the real sort.

Sketch.

1 By the triviality of acl in $T_{\mathfrak{U}}$, one can show that

$$A \bigcup_{C}^{M} B \Leftrightarrow \overline{A} \cap \overline{B} \subseteq \overline{C}.$$

2 Next, show that $\bigcup^{M} = \bigcup^{p}$ in $T_{\mathfrak{U}}$.

3 Suppose $A, B \subseteq \mathbb{U}$ are small. For $x \in \overline{A} \cap \overline{B}$, let $B_x \subseteq B$ be countable such that $x \in \overline{B_x}$. Let $B_0 := \bigcup \{B_x \mid x \in \overline{A} \cap \overline{B}\}$. Then $A \bigcup_{B_0}^{\mathfrak{p}} B$ and $|B_0| \leq \aleph_0 \cdot |\overline{A}|$, showing that $\bigcup_{B_0}^{\mathfrak{p}}$ satisfies local character.

Isaac Goldbring (UCLA)

$\bigcup^{M} = \bigcup^{p}$ in $T_{\mathfrak{U}}$

- It suffices to show that for any small, closed *A*, *B*, *C* ⊆ U, there exists $A' \equiv_C A$ with $A' \bigcup_C^M B$.
- Let $(a_i | i \in I)$ enumerate $A \setminus C$ and $(b_j | j \in J)$ enumerate $B \setminus C$.
- Let $\epsilon_i := d(a_i, C)$ and $\delta_{ij} := \max\{\epsilon_i, d(a_i, b_j)\}.$
- Let $\Sigma(X) := \operatorname{tp}(A/C) \cup \{|d(x_i, b_j) \delta_{i,j}| = 0 \mid i \in I, j \in J\}$. It suffices to show that Σ is satisfiable.
- To show that Σ is satisfiable, it suffices to show that Σ prescribes a metric on X ∪ B ∪ C.
- Check that all of the various triangle inequalities hold. This follows from the choice of δ_{ij} .

3

An Application of Real Rosiness

By the universality of \mathfrak{U} , we know that \mathfrak{U}^n isometrically emdeds in \mathfrak{U} for any $n \ge 2$. However,

Corollary

For any $n \ge 2$, there is no definable isometric embedding $\mathfrak{U}^n \to \mathfrak{U}$.

Proof.

First show that any definable isometric embedding $\mathfrak{U}^n \to \mathfrak{U}$ extends to an isometric embedding $\mathbb{U}^n \to \mathbb{U}$. (Recall that this actually takes work in continuous logic!) Then show that $U^{\mathfrak{p}}_{\mathsf{real}}(\mathbb{U}^n) = n$ and use monotonicity of $U^{\mathfrak{p}}_{\mathsf{real}}$ -rank with respect to definable injections.

29/36

Definable Predicates

- Many issues around definability in continuous logic revolve around the notion of a definable predicate.
- Suppose, for each n ∈ N, φ_n(x, y_n) is a formula, where the y_n's are increasing finite tuples of variables. Suppose also that u : [0,1]^N → [0,1] is a continuous function. Then we obtain a definable predicate P(x, Y) := u((φ_n(x, y_n)), where Y := ⋃_n y_n.
- It should be viewed as a "formula" with finitely many object variables x and countably many parameter variables Y.

- As in classical logic, the eq-construction can be viewed as adding canonical parameters for formulae (or definable predicates in our case).
- Suppose P(x, Y) is a definable predicate. On \mathcal{M}_Y , define the pseudometric $d_P(B, B') := \sup_x |P(x, B) P(x, B')|$.
- In \mathcal{M}^{eq} , we add a sort \mathcal{M}_P , which is the metric space $\mathcal{M}_Y/(d_P = 0)$, as well as relevant "projection maps."
- The elements of M_P are canonical parameters of instances of P(x, Y), meaning an automorphism preserves P(x, B) if and only if it fixes the equivalence class of B.
- If |Y| < ω, we say that P(x, Y) is a *finitary definable predicate* and. If P(x, Y) is a finitary definable predicate, then the elements of M_P are called *finitary imaginaries*.

■ \mathcal{M}^{feq} is the reduct of \mathcal{M}^{eq} where one only considers finitary imaginaries.

- As in classical logic, the eq-construction can be viewed as adding canonical parameters for formulae (or definable predicates in our case).
- Suppose P(x, Y) is a definable predicate. On M_Y, define the pseudometric d_P(B, B') := sup_x |P(x, B) P(x, B')|.
- In \mathcal{M}^{eq} , we add a sort \mathcal{M}_P , which is the metric space $\mathcal{M}_Y/(d_P = 0)$, as well as relevant "projection maps."
- The elements of M_P are canonical parameters of instances of P(x, Y), meaning an automorphism preserves P(x, B) if and only if it fixes the equivalence class of B.
- If |Y| < ω, we say that P(x, Y) is a *finitary definable predicate* and. If P(x, Y) is a finitary definable predicate, then the elements of M_P are called *finitary imaginaries*.

■ *M*^{feq} is the reduct of *M*^{eq} where one only considers finitary imaginaries.

- As in classical logic, the eq-construction can be viewed as adding canonical parameters for formulae (or definable predicates in our case).
- Suppose P(x, Y) is a definable predicate. On M_Y, define the pseudometric d_P(B, B') := sup_x |P(x, B) P(x, B')|.
- In \mathcal{M}^{eq} , we add a sort \mathcal{M}_P , which is the metric space $\mathcal{M}_Y/(d_P = 0)$, as well as relevant "projection maps."
- The elements of M_P are canonical parameters of instances of P(x, Y), meaning an automorphism preserves P(x, B) if and only if it fixes the equivalence class of B.
- If |Y| < ω, we say that P(x, Y) is a *finitary definable predicate* and. If P(x, Y) is a finitary definable predicate, then the elements of M_P are called *finitary imaginaries*.

■ \mathcal{M}^{feq} is the reduct of \mathcal{M}^{eq} where one only considers finitary imaginaries.

- As in classical logic, the eq-construction can be viewed as adding canonical parameters for formulae (or definable predicates in our case).
- Suppose P(x, Y) is a definable predicate. On M_Y, define the pseudometric d_P(B, B') := sup_x |P(x, B) P(x, B')|.
- In \mathcal{M}^{eq} , we add a sort \mathcal{M}_P , which is the metric space $\mathcal{M}_Y/(d_P = 0)$, as well as relevant "projection maps."
- The elements of \mathcal{M}_P are canonical parameters of instances of P(x, Y), meaning an automorphism preserves P(x, B) if and only if it fixes the equivalence class of B.
- If |Y| < ω, we say that P(x, Y) is a *finitary definable predicate* and. If P(x, Y) is a finitary definable predicate, then the elements of M_P are called *finitary imaginaries*.
- *M*^{feq} is the reduct of *M*^{eq} where one only considers finitary imaginaries.

- As in classical logic, the eq-construction can be viewed as adding canonical parameters for formulae (or definable predicates in our case).
- Suppose P(x, Y) is a definable predicate. On M_Y, define the pseudometric d_P(B, B') := sup_x |P(x, B) P(x, B')|.
- In \mathcal{M}^{eq} , we add a sort \mathcal{M}_P , which is the metric space $\mathcal{M}_Y/(d_P = 0)$, as well as relevant "projection maps."
- The elements of M_P are canonical parameters of instances of P(x, Y), meaning an automorphism preserves P(x, B) if and only if it fixes the equivalence class of B.
- If |Y| < ω, we say that P(x, Y) is a *finitary definable predicate* and. If P(x, Y) is a finitary definable predicate, then the elements of M_P are called *finitary imaginaries*.
- *M*^{feq} is the reduct of *M*^{eq} where one only considers finitary imaginaries.

- As in classical logic, the eq-construction can be viewed as adding canonical parameters for formulae (or definable predicates in our case).
- Suppose P(x, Y) is a definable predicate. On M_Y, define the pseudometric d_P(B, B') := sup_x |P(x, B) P(x, B')|.
- In \mathcal{M}^{eq} , we add a sort \mathcal{M}_P , which is the metric space $\mathcal{M}_Y/(d_P = 0)$, as well as relevant "projection maps."
- The elements of M_P are canonical parameters of instances of P(x, Y), meaning an automorphism preserves P(x, B) if and only if it fixes the equivalence class of B.
- If |Y| < ω, we say that P(x, Y) is a *finitary definable predicate* and. If P(x, Y) is a finitary definable predicate, then the elements of M_P are called *finitary imaginaries*.

■ *M*^{feq} is the reduct of *M*^{eq} where one only considers finitary imaginaries.

31/36

Definition

We say that *T* has *weak elimination of finitary imaginaries (WEFI*) if for every finitary definable predicate $\varphi(x)$, there is a finite tuple *c* from \mathcal{M} such that $\varphi(x)$ is definable over *c* and whenever $\varphi(x)$ is defined over a finite tuple *d*, then $c \in \operatorname{acl}(d)$.

Equivalently, for every $e \in \mathcal{M}^{\text{feq}}$, there is a finite tuple I(e) from \mathcal{M} such that $e \in \text{dcl}(I(e))$ and $I(e) \in \text{acl}(e)$. (I(e) is a "weak code" for e.)

イロト イ押ト イヨト イヨト

We needed the following fact in our proof that $T_{\mathfrak{U}}$ has WEFI.

Theorem (J. Melleray)

Let A and B be finite subsets of U. Set $G := \text{lso}(U|A \cap B)$ and H := the subgroup of G generated by $\text{lso}(U|A) \cup \text{lso}(U|B)$. Then H is dense in G with respect to the topology of pointwise convergence.

$T_{\mathfrak{U}}$ has WEFI

- Suppose that $\varphi(x, a)$ is a finitary definable predicate.
- Let *b* be a subtuple of *a* such that $\varphi(x)$ is definable over *b* and $\varphi(x)$ is not definable over any proper subtuple of *b*.
- Now suppose that $\varphi(x)$ is definable over the finite tuple *d*. Let $G := \operatorname{lso}(\mathbb{U}|b \cap d)$ and let *H* be the subgroup of *G* generated by $\operatorname{lso}(\mathbb{U}|b) \cup \operatorname{Aut}(\mathbb{U}|d)$. Let $c \in \mathbb{U}$.
- If $\tau \in H$, then $\varphi(\tau(c)) = \varphi(c)$.
- If $\tau \in G$, then by the above theorem, there is a sequence (τ_n) from H such that $\tau_n(c) \to \tau(c)$.
- Since φ is continuous, we have

$$\varphi(\tau(c)) = \varphi(\lim \tau_n(c)) = \lim \varphi(\tau_n(c)) = \varphi(c).$$

- Thus, φ is defined over $b \cap d$.
- By choice of b, we have $b \cap d = b$, i.e. $b \in acl(d)$.

Thus, we have that $T_{\mathfrak{U}}$ has WEFI.

Isaac Goldbring (UCLA)

The Urysohn space is rosy

Real Rosy + WEFI \Rightarrow Rosy w.r.t. \mathcal{M}^{feq}

Theorem (Ealy, G.)

If T is real rosy and has WEFI, then T is rosy w.r.t. finitary imaginaries.

Corollary

 $T_{\mathfrak{U}}$ is rosy with respect to finitary imaginaries.

Questions

What about arbitrary imaginaries? Can we (weakly) eliminate them? Is $T_{\mathfrak{U}}$ rosy?

3

References

- H. Adler, A geometric introduction to forking and thorn-forking
- I. Ben Yaacov, A. Berenstein, C. W. Henson, A. Usvyatsov, Model theory for metric structures, Model theory with applications to algebra and analysis. Vol. 2, pgs. 315-427, London Math. Soc. Lecture Note Ser. (350), Cambridge Univ. Press, Cambridge, 2008.
- C. Ealy and I. Goldbring, Thorn-forking in continuous logic, To appear in the Journal of Symbolic Logic. Available at http://www.math.ucla.edu/isaac
- A. Pillay, An introduction to stability theory

< ロ > < 同 > < 回 > < 回 >