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Continuous Logic

Metric Structures

A (bounded) metric structure is a (bounded) complete metric
space (M,d), together with distinguished

1 elements,
2 functions (mapping Mn into M for various n), and
3 predicates (mapping Mn into a bounded interval in R for various n).

Each function and predicate is required to be uniformly
continuous.
For the sake of simplicity, we suppose that the metric is bounded
by 1 and the predicates all take values in [0,1].
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Continuous Logic

Examples of Metric Structures

1 IfM is a structure from classical model theory, then we can
considerM as a metric structure by equipping it with the discrete
metric. If P ⊆ Mn is a distinguished predicate, then we consider it
as a mapping P : Mn → {0,1} ⊆ [0,1] by

P(a) = 0 if and only ifM |= P(a).

2 Suppose X is a Banach space with unit ball B. Then
(B,0X , ‖ · ‖, (fα,β)α,β) is a metric structure, where fα,β : B2 → B is
given by f (x , y) = α · x + β · y for all scalars α and β with
|α|+ |β| ≤ 1.

3 If H is a Hilbert space with unit ball B, then
(B,0H , ‖ · ‖, 〈·, ·〉, (fα,β)α,β) is a metric structure.
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Continuous Logic

Bounded Continuous Signatures

As in classical logic, a signature L for continuous logic consists of
constant symbols, function symbols, and predicate symbols, the
latter two coming also with arities.
New to continuous logic: For every function symbol F , the
signature must specify a modulus of uniform continuity ∆F , which
is a function ∆F : (0,1]→ (0,1]. Likewise, a modulus of uniform
continuity is specified for each predicate symbol.
The metric d is included as a (logical) predicate in analogy with =
in classical logic.
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Continuous Logic

L-structures

An L-structure is a metric structureM whose distinguished constants,
functions, and predicates are interpretations of the corresponding
symbols in L. Moreover, the uniform continuity of the functions and
predicates is witnessed by the moduli of uniform continuity specified by
L.

e.g. If P is a unary predicate symbol, then for all ε > 0 and all x , y ∈ M,
we have:

d(x , y) < ∆P(ε)⇒ |PM(x)− PM(y)| ≤ ε.
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Continuous Logic

Formulae

Terms are defined as in classical logic.
Atomic formulae are of the form d(t1, t2) and P(t1, . . . , tn) where P
is an n-ary predicate symbol and t1, . . . , tn are terms.
Connectives: If ϕ1, . . . , ϕn are formulae and u : [0,1]n → [0,1] is
any continuous function, then u(ϕ1, . . . , ϕn) is a formula.
Quantifiers: If ϕ is a formula, then so is supx ϕ and infx ϕ.
(sup “=” ∀ and inf “=” ∃)
If ϕ(x1, . . . , xn) is an L-formula,M an L-structure, and a1, . . . ,an
elements of M, thenM gives a value ϕM(a1, . . . ,an), which is a
number in [0,1] measuring “how true” ϕ is when a1, . . . ,an are
plugged in for the free variables.
tM : Mn → M and ϕM : Mn → [0,1] are uniformly continuous for
any term t and any formula ϕ (with ∆t and ∆ϕ calculable from the
moduli in the signature.)
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Continuous Logic

Theories

A condition is an expression of the form “ϕ = 0”, where ϕ is a
formula. If ϕ is a sentence, then the condition “ϕ = 0” is called a
closed condition.

Example

In the signature for Hilbert spaces, the condition 〈x , y〉 = 0 expresses
that x and y are orthogonal. The closed condition

infx1 · · · infxn max
i,j
|〈xi , xj〉 − δij | = 0

expresses that, for any ε > 0, there are x1, . . . , xn such that 〈xi , xj〉 < ε
and |‖xi‖ − 1| < ε. In an ω1-saturated structure, where inf’s are
realized, it will express that there are n mutually orthogonal unit
vectors.
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Continuous Logic

Theories

A condition is an expression of the form “ϕ = 0”, where ϕ is a
formula. If ϕ is a sentence, then the condition “ϕ = 0” is called a
closed condition.
We can express weak inequalities as conditions: ϕ ≤ ψ can be
expressed as ϕ−. ψ = 0, where a−. b = max(0,a− b).
An L-theory is a set of closed L-conditions.
IfM is an L-structure, then the theory ofM is the theory

Th(M) := {“ϕ = 0” | ϕ a sentence, ϕM = 0}.

If ϕM = r , then |ϕM − r | = 0, so “|ϕ− r | = 0” will be in the theory
ofM.
An L-theory is complete if it is of the form Th(M) for some
L-structureM.
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Continuous Logic

Examples of Complete Continuous Theories

1 Infinite-dimensional Hilbert spaces (over R)
2 Probability algebras based on atomless probability spaces
3 Lp-Banach lattices
4 Richly branching R-trees
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Continuous Logic

Definable and algebraic closure

Definition

Suppose thatM is a structure and A ⊆ M. If b ∈ M, we say:
b ∈ dcl(A) if {b} is an A-definable set.
b ∈ acl(A) if b lives in a compact A-definable set.
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Continuous Logic

Saturated Structures

Definition

IfM is an L-structure and A ⊆ M is a parameterset, then a collection
p(x) of L(A)-conditions is a (complete) type over A if there isM� N
and b ∈ N |x | such that p(x) = {ϕ(x) = 0 : ϕN (b) = 0, ϕ(x) ∈ L(A)}.

Definition

If κ is an infinite cardinal, a structureM is said to be κ-saturated if
every type over a parameterset of cardinality < κ is realized in M.

Fact

Given any infinite cardinal κ and any structureM, there is an
elementary extensionM� N such that N is κ-saturated.
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Continuous Logic

Definable and algebraic closure-restated

Definition

Suppose thatM is a ω1-saturated structure and A ⊆ M. If b ∈ M, we
say:

b ∈ dcl(A) if σ(b) = b for all σ ∈ Aut(M/A).
b ∈ acl(A) if the orbit of b under the action of Aut(M/A) is
compact.

It is clear from the above description that Ā ⊆ dcl(A) ⊆ acl(A) for all
A ⊆ M, even ifM is not saturated.

Remark

For my next talk, it will be relevant to note that dcl and acl have
countable character: b ∈ dcl(A) if and only if b ∈ dcl(A0) for some
countable A0 ⊆ A.
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The Urysohn Sphere

The Urysohn Sphere

Definition

A Polish metric space is a separable, complete metric space.

Definition

The Urysohn sphere U is the unique (up to isometry) Polish metric
space of diameter 1 which is:

1 universal- all Polish metric spaces of diameter ≤ 1 admit an
isometric embedding into U;

2 ultrahomogeneous- if φ : X1 → X2 is an isometry between finite
subspaces of U, then there is an isometry φ̃ : U→ U extending φ.

Existence: Urysohn, Katětov; alternatively, it is the Fraisse limit of finite
metric spaces of diameter ≤ 1 (in the sense of continuous logic)
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The Urysohn Sphere

Axioms for the theory of U

In this slide, a formula θ(x1, . . . , xn) denotes a formula of the form
maxi,j |d(xi , xj)− rij |, where (rij) is a distance matrix for a finite
metric space of diameter ≤ 1.
Then for any such formula θ(x1, . . . , xn, xn+1) and any ε > 0, there
is a δ > 0 such that, for a1, . . . ,an ∈ U satisfying
(θ � n)(a1, . . . ,an) < δ, there exists an+1 ∈ U such that
θ(a1, . . . ,an,an+1) ≤ ε.
We let TU denote the set of axioms of the form:

∀~x∃y((θ � n)(~x) < δ → θ(~x , y) ≤ ε).

More precisely,

sup
~x

infy (min
(

ε

1− δ
(1− (θ � n)(~x)), θ(~x , y)

)
−. ε) = 0.
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The Urysohn Sphere

Basic Model Theory of TU

Theorem (Folklore/Henson/Usvyatsov)

1 TU is ℵ0-categorical, whence equal to Th(U);
2 TU admits QE;
3 TU is the model completion of the empty L-theory (so is the theory

of existentially closed metric spaces of diameter ≤ 1);
4 for all A ⊆ U, we have acl(A) = A, so dcl and acl are trivial.

So TU is like a continuous analogue of the theory of the infinite set in
classical logic. (And in other ways, it’s drastically different!-See next
talk.)
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The Urysohn Sphere

Proof of Fact 4

Lemma

acl(A) = Ā.

Proof.

Work in an ω1-saturated elementary extension U of U. Suppose that
b /∈ Ā. Consider the following collection of formulae:

{d(xi ,a) = d(b,a) : i < ω, a ∈ A}∪{d(xi , xj) = 2�d(b, Ā) : i < j < ω}.

Any finite subset defines a metric space, so can be realized in U. By
ω1-saturation, we can find (bi : i < ω) in U realizing this partial type.
By quantifier-elimination, tp(bi/A) = tp(b/A) for all i < ω. But (bi) has
no convergent subsequence, so the orbit of b under Aut(U/A) is not
compact, whence b /∈ acl(A).
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Definable functions

Definable predicates

For purposes of definability in continuous logic, formulae aren’t
expressive enough. It turns out that we need to consider uniform limits
of formulae, which we call definable predicates:

Definition

Suppose thatM is a structure and A ⊆ M. Then P : Mn → [0,1] is
said to be a definable predicate inM over A if there are formulae
ϕn(x) with parameters from A such that the sequence (ϕMn ) converges
uniformly to P.

Remark

Although each ϕn can only mention finitely many parameters from A,
the sequence (ϕn) can mention countably many parameters from A.
Thus, definable things (sets, functions,. . . ) are always definable over
countably many parameters, but not necessarily finitely many
parameters.
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Definable functions

Definable functions

1 For A ⊆ M, a function f : Mn → M is A-definable if the predicate
(x , y) 7→ d(f (x), y) : Mn+1 → [0,1] is an A-definable predicate.

2 Given an elementary extensionM� N , such a function admits a
canonical extension f̃ : Nn → N, which is also A-definable:
We have (ϕMn ) converging uniformly to d(f (x), y). Then (ϕNn ) will
converge uniformly to some Q(x , y). One then checks that the
zeroset of Q defines a function, which will be f̃ .

Isaac Goldbring ( UCLA ) Definable functions in Urysohn space Irvine February 6, 2012 21 / 40



Definable functions

Definable functions

1 For A ⊆ M, a function f : Mn → M is A-definable if the predicate
(x , y) 7→ d(f (x), y) : Mn+1 → [0,1] is an A-definable predicate.

2 Given an elementary extensionM� N , such a function admits a
canonical extension f̃ : Nn → N, which is also A-definable:
We have (ϕMn ) converging uniformly to d(f (x), y). Then (ϕNn ) will
converge uniformly to some Q(x , y). One then checks that the
zeroset of Q defines a function, which will be f̃ .

Isaac Goldbring ( UCLA ) Definable functions in Urysohn space Irvine February 6, 2012 21 / 40



Definable functions

Definable functions
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3 Definable functions are uniformly continuous.
4 If f : Mn → M is A-definable, then for every x = (x1, . . . , xn) ∈ Mn,

we have f (x) ∈ dcl(A ∪ {x1, . . . , xn}).
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Definable functions

Definable functions in U

Again, U is an ω1-saturated elementary extension of U.

Theorem (G.)

If f : Un → U is A-definable, then either f̃ is a projection function
(x1, . . . , xn) 7→ xi or else f̃ has compact image contained in Ā ⊆ U.
Consequently, either f is a projection function or else has relatively
compact image.
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Definable functions

Corollaries

Corollary

1 If f : U→ U is a definable surjective/open/proper map, then
f = idU.

2 If f : U→ U is a definable isometric embedding, then f = idU.
3 If n ≥ 2, then there are no definable isometric embeddings

Un → U.

Reason: Compact sets in U have no interior.
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Definable functions

Isometric Embeddings U→ U

There are many natural isometric embeddings U→ U, none of which
(other than idU) are definable in U.

Examples

1 Suppose that X1 and X2 are compact subspaces of U. Then any
isometry φ : X1 → X2 can be extended to an isometry φ̃ : U→ U.

2 Suppose that x1, . . . , xn ∈ U. Define

Med(x1, . . . , xn) := {z ∈ U | d(z, xi) = d(z, xj) for all i , j}.

Then Med(x1, . . . , xn) is isometric to U.
3 Suppose that M is a Polish subspace of U which is a Heine-Borel

subspace. Then for any R ∈ (0,1], {x ∈ U | d(x ,M) ≥ R} is
isometric to U.
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Definable functions

Definable Groups

Corollary

There are no definable group operations on U.

Cameron and Vershik introduced a group operation on U for which
there is a dense cyclic subgroup. This group operation allows one to
introduce a notion of translation in U. By the above corollary, this group
operation is not definable.
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Definable functions

Key Ideas to the Proof for n = 1

Suppose that f : U→ U is an A-definable function, where A ⊆ U is
countable. Let f̃ : U→ U denote its canonical extension.

1 By triviality of dcl, for any x ∈ U, we have
f̃ (x) ∈ dcl(Ax) = Ā ∪ {x}.

2 Let X = {x ∈ U | f (x) = x}. Show that f̃−1(Ā) \ X ⊆ int(f̃−1(Ā)).
3 Prove a general lemma showing that if F ⊆ U is a closed subset

and G ⊆ F is a closed, separable subset of F for which
F \G ⊆ int(F ), then either F = G or F = U. This involves a bit of
“Urysohn-esque” arguing.

4 Finally, a saturation argument shows that if f̃ (U) ⊆ U, then f̃ (U) is
compact.
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Definable functions

Proof of Step 2

Lemma

X = {x ∈ U | f (x) = x}. Then f̃−1(Ā) \ X ⊆ int(f̃−1(Ā)).

Proof.

Suppose f̃ (x) ∈ Ā and f̃ (x) 6= x . Let r := d(f̃ (x), x) > 0. Let
δ = min( r

2 ,∆f ( r
2)). Suppose d(x , y) < δ. Then d(f̃ (x), f̃ (y)) ≤ r

2 . If
f̃ (y) = y , then

d(x , f̃ (x)) ≤ d(x , y) + d(f̃ (x), y) < r ,

a contradiction. Thus y ∈ f̃−1(Ā).
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Definable functions

Urysohn-esque arguing

Lemma

Let (xi | i < ω) be a sequence from U and (ri | i < ω) a sequence from
(0,1). Set B :=

⋃
i<ω B(xi ; ri). Then U \ B is finitely injective.

Proof

Fix a1, . . . ,an ∈ U \ B and let {a1, . . . ,an, y} be a one-point metric
extension. By saturation, it is enough to find, for each m < ω, a z ∈ U
such that d(y ,ai) = d(z,ai) for i = 1, . . . ,n and such that d(z, xi) ≥ ri
for each i = 1, . . . ,m.
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Definable functions

Urysohn-esque arguing (cont’d)

Proof (cont’d)

Consider the one-point metric exension

{a1, . . . ,an, x1, . . . , xm, z}

of {a1, . . . ,an, x1, . . . , xm} given by:
d(z,ai) = d(y ,ai) for each i ∈ {1, . . . ,n}, and
d(z, xj) = min1≤k≤n(d(y ,ak ) + d(ak , xj)) for each j ∈ {1, . . . ,m}.

Such a z can be found in U and this z is as desired.

Corollary

U \ B is path-connected.
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Definable functions

Proof of Step 3

Lemma

Suppose that F ⊆ U is closed and G ⊆ F is a closed, separable subset
of F for which F \G ⊆ int(F ). Then either F = G or F = U.

Proof.

Suppose F 6= G. Let 0 < r < d(y ,G). Cover G with countably many
balls of radius r and call the union of these balls B. Set Y = U \ B,
which is path-connected by the previous lemma. Now
F ∩ Y = int(F ) ∩ Y is a nonempty, clopen subset of Y , implying that
F ∩ Y = Y . It follows that Y ⊆ F . Since r can be taken to be arbitrarily
small, this shows that U \G ⊆ F , whence F = U.
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Definable functions

Proof of Step 4

Lemma

Suppose that f̃ (U) ⊆ U. Then f̃ (U) is compact.

Proof.

It is a fact that f̃ (U) is closed, so we only need to show that it is totally
bounded. Fix δ > 0. Let ϕ(x , y) be a formula that approximates
d(f (x), y) with error δ

4 . Let (ai : i < ω) be a dense subset of U. Then
the collection {ϕ(x ,ai) ≥ δ

2 : i < ω} of conditions is inconsistent. By
ω1-saturation, there are a1, . . . ,an such that {ϕ(x ,ai) ≥ δ

2 : 1 ≤ i ≤ n}
is inconsistent. It follows that f̃ (U) ⊆

⋃n
i=1 B(ai ; δ).
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Definable functions

Question

Question 3

Can we improve the theorem on definable functions to read: If
f : Un → U is definable, then either f is a projection or a constant
function?

I can show that a positive solution to the above question follows from a
positive solution to the n = 1 case.
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Definable functions

The Case of Relatively Compact Image

In the hopes of answering this question, we can say some things about
f̃ (Un) in the case that it is relatively compact:

f̃ (Un) is a continuum (connected, compact space).
Consequently, if Ā is totally disconnected, then f̃ is a constant
function.
f̃ (Un) is a perfect space unless it is a singleton.
If f̃ (Un) is not a singleton, then f̃ (Un) is either a Peano space
(continuous image of [0,1]) or else a reducible continuum (every
two points are contained in a proper subcontinuum.)
Consequently, f̃ (Un) is a decomposable continuum. Since the
generic continuum is (hereditarily) indecomposable, we see that
f̃ (Un) is a special kind of continuum.
f̃ (Un) contains arbitrarily small path-connected subcontinua.
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Definable functions

Question

Question 4

Are there any definable injections f : U→ U other than the identity?

There can exist injective functions U→ U which have relatively
compact image, so our theorem doesn’t immediately help us: Consider

(xn) 7→ (
xn

2n ) : (0,1)∞ → `2.

and use the fact that U ∼= `2 ∼= (0,1)∞.

Observe that a positive answer to Question 3 yields a negative answer
to this question.
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Injective Definable Functions

Lemma

If f : U→ U is injective and definable, then f = idU.

Proof.

One can show that the complement of an open ball in U is definable.
Since f maps definable sets to definable sets (which is a fact we are
unsure of in U), it follows that f is a closed map, whence a topological
embedding. By our main theorem, we see that f is the identity.

Remark

This doesn’t immediately help us, for an injective definable map U→ U

need not induce an injective definable map U→ U. (Continuous logic
is a positive logic!)
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Upwards Transfer

Lemma (BBHU, Ealy-G.)

Suppose that M is ω-satuated and P,Q : Mn → [0,1] are definable
predicates such that P is defined over a finite parameterset. Then the
statement “ for all a ∈ Mn (P(a) = 0⇒ Q(a) = 0)” is expressible in
continuous logic.

It follows that the natural extension of an isometric embedding is
also an isometric embedding:

|d(x , y)− r | = 0⇒ |d(f (x), f (y))− r | = 0.

It also follows that if f : Mn → M is an A-definable injection, where
A is finite, then f̃ is also an injection:

d(f (x), f (y)) = 0⇒ d(x , y) = 0.
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Musings on Definable Sets

A closed set X ⊆ Um is A-definable if the predicate
x 7→ d(x ,X ) : Um → [0,1] is A-definable.

By the strong ω-categoricity of TU, we have that, for finite A ⊆ U,
X ⊆ Um is A-definable if and only if X is invariant under Aut(U/A).
Consequently, for A-definable X ,Y ⊆ U, we have:

∂X , int(X ), U \ X , X ∩ Y , and Ker(X ) are A-definable.
If X is connected, then X is a “generalized annulus”.
The connected components of X are A-definable and any
1-element connected subset of X must be an element of A.
Moreover, if there are infinitely many connected components of X ,
then they cannot be a uniform distance apart.
If X is compact, then X is a (finite) subset of A.
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Question

Question 5

What can we say about arbitrary definable subsets of Um?

There probably is no nice “geometric” description of the definable sets.
Indeed, any compact set is definable in any metric structure, so any
compact metric space is a definable subset of U. However, maybe we
can obtain results along the lines of the preceding slide saying that
certain topological and geometric constructions preserve definability...
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