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Nonstandard analysis

Nonstandard Extensions

Start with a mathematical universe V containing all relevant
mathematical objects, e.g.

N, R, a topological group G, a Lie algebra g;
various cartesian products of the above sets;
the elements of the above sets and the power sets of the above
sets;

Then extend, functorially, to a nonstandard mathematical universe V ∗:
To every A ∈ V , there is a corresponding A∗ ∈ V ∗, e.g. we have
N∗, R∗, G∗, sin∗(x) (which is a function R∗ → [−1,1]∗);
For simplicity, we write sin for sin∗.
(Transfer Principle) V ∗ should behave “logically” like V .
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Nonstandard analysis

The Transfer Principle

Example

Let (G, ·,1) be a group. Then the following are true in V :
(∀x ∈ G)(∃y ∈ G)[(x · y = 1) and (y · x = 1)]

(∀x ∈ G)(x · 1 = 1 · x = x)

(∀x ∈ G)(∀y ∈ G)(∀z ∈ G)[(x · y) · z = x · (y · z)].
By transfer, the following are true in V ∗:

(∀x ∈ G∗)(∃y ∈ G∗)[(x · y = 1) and (y · x = 1)]

(∀x ∈ G∗)(x · 1 = 1 · x = x)

(∀x ∈ G∗)(∀y ∈ G∗)(∀z ∈ G∗)[(x · y) · z = x · (y · z)].
So (G∗, ·,1) is also a group.
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Nonstandard analysis

Ultrapowers

Definition

Given an infinite set I, a nonprincipal ultrafilter on I is a finitely additive
{0,1}-valued probability measure µ on I such that finite sets get
measure 0.

Given a nonprincipal ultrafilter µ on I and a family (Xi)i∈I of sets, we
can form their ultraproduct

∏
µ Xi , which is the quotient of

∏
i Xi by the

relation of µ-a.e. agreement. If each Xi = X , then we refer to
Xµ :=

∏
µ X as an ultrapower of X .

Fact

For any infinite set I and nonprinicpal ultrafilter µ on I, Xµ is a
nonstandard extension of X .
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Nonstandard analysis

Rµ

Consider the example of Rµ. The transfer principle says that Rµ is an
ordered field extension of R. For example:

Suppose that x = [(xi)]µ 6= 0. Then xi 6= 0 a.e. Define yi := x−1
i

when xi 6= 0 and otherwise define yi := who cares .
Then xi · yi = 1 a.e., so y := [(yi)]µ = x−1.
Similarly, define x < y if and only if xi < yi a.e. This is a linear
order because the whole set has measure 1.

Suppose I = N. Then α := [(1, 1
2 ,

1
3 , . . .)] ∈ Rµ is a positive infinitesimal

(because finite sets have measure 0) and 1
α is a positive infinite

element. In fact, 1
α = [(1,2,3, . . . , )] ∈ N∗.
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Nonstandard analysis

Internal sets and saturation

A ⊆ Xµ is internal if there are Ai ⊆ X such that A =
∏
µ Ai .

More generally, A ⊆ X ∗ is internal if A ∈ P(X )∗.

Definition

Let κ be an infinite cardinal. We say that V ∗ is κ-saturated if whenever
{Oi | i < κ} is a family of internal sets such that any intersection of a
finite number of them is nonempty, then the intersection of all them is
nonempty.

We will assume our V ∗ is κ-saturated for a suitably large κ. This can
be arranged by choosing suitable I and µ.
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Nonstandard analysis

An Example of Saturation: Infinitesimals Again

For i ∈ N, let Oi := {x ∈ R∗ | 0 < x < 1
i }. Each Oi is internal and any

finite intersection of the Oi is nonempty. Saturation yields x ∈
⋂

i∈NOi .
Such an x is a positive infinitesimal.

The set of infinitesimals is external, for otherwise it would have a least
upper bound (by Transfer), which it doesn’t. Similarly, the set of infinite
elements is external.
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Nonstandard analysis

Infinitesimals in Hausdorff Spaces

Suppose X is a Hausdorff topological space. Then one can use a
similar trick as in the previous slide to construct for any a ∈ X an
element a′ such that a′ ∈ U∗ for all neighborhoods U of a in X .
Such an a′ is infinitely close to a and we write a′ ∈ µ(a). (Usually
external)
We let Xns :=

⋃
a∈X µ(a), the set of nearstandard elements of X ∗.

(Usually external)
The Hausdorff axiom implies that µ(a) ∩ µ(b) = ∅ if a 6= b. Thus, if
a′ ∈ Xns, we can write st(a′), the standard part of a′, for the unique
element of X that a′ is infinitely close to. If a,b ∈ Xns are such that
st(a) = st(b), we sometimes write a ∼ b.
In the case of a topological group G, we will denote µ(1) simply by
µ and will call it the set of infinitesimals of G.
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Nonstandard analysis

Infinitesimals in Hausdorff Spaces

Lemma

If X is a Hausdorff space, U ⊆ X, and a ∈ U, then a is in the interior of
U if and only if µ(a) ⊆ U∗.

Lemma

Suppose X and Y are Hausdorff spaces, f : X → Y is a function, and
a ∈ X. Then f is continuous at a if and only if f (µ(a)) ⊆ µ(f (a)).

Lemma (Robinson)

X is compact if and only if X ∗ = Xns.
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Hilbert’s Fifth Problem

1 Nonstandard analysis

2 Hilbert’s Fifth Problem

3 Infinite-Dimensional Lie Theory
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Hilbert’s Fifth Problem

Hilbert’s Fifth Problem

Definition

A topological group G is locally euclidean if there is a neighborhood
of the identity homeomorphic to some Rn.

Definition

G is a Lie group if G is a real analytic manifold which is also a group
such that the maps (x , y) 7→ xy : G ×G→ G and x 7→ x−1 : G→ G
are real analytic maps.

Hilbert’s Fifth Problem (H5)

If G is a locally euclidean topological group, is there a real analytic
structure on G compatible with the topology so that the group
operations become real analytic?
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Hilbert’s Fifth Problem

Positive Answers to H5

Linear Case: G can be continuously embedded into Gln(R) for
some n (von Neumann)
Abelian Case (Pontrjagin)
Compact Case (Weyl)
Full Solution: Gleason, Montgomery, Zippin (1952)

Theorem
For a locally compact (Hausdorff) group G, the following are
equivalent:

1 G is locally euclidean;
2 G has no small subgroups, i.e. there is a neighborhood of the

identity containing no nontrivial subgroups of G;
3 G is a Lie group.

Nonstandard Exposition of the Full Solution: Hirschfeld (1990)
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Hilbert’s Fifth Problem

One Parameter Subgroups

Definition

A one-parameter subgroup of G (1-ps of G) is a continuous group
morphism X : R→ G.

Put L(G) := {X : R→ G | X is a 1-ps of G}.

We have the scalar multiplication map
(r ,X ) 7→ rX : R× L(G)→ L(G), where (rX )(t) := X (rt).

We let O denote the trivial 1-ps of G, i.e. O(t) ≡ 1. Then:

0X = O and 1X = X ;
r(sX ) = (rs)X .
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Hilbert’s Fifth Problem

The Case of Lie Groups

Suppose G is a Lie group and X ∈ L(G). Then X is real analytic
and so X ′(0) ∈ T1(G). We get a bijection
X 7→ X ′(0) : L(G)→ T1(G) and the addition operation on L(G)
that makes this an R-vector space isomorphism is given by

(X + Y )(t) = lim
n→∞

(X (
1
n

)Y (
1
n

))[nt].

Let n = dim G = dimR L(G) and make L(G) a real analytic
manifold so that the linear isomorphisms L(G) ∼= Rn are analytic
isomorphisms.
Then the exponential map X 7→ X (1) : L(G)→ G yields an
analytic isomorphism from an open neighborhood of O in L(G)
onto an open neighborhood of 1 in G.
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Hilbert’s Fifth Problem

Plan of Proof for NSS implies Lie

Suppose G is locally compact and has NSS. One takes the following
steps to prove that G is a Lie group.

1 Show that for any X ,Y ∈ L(G), there is an X + Y ∈ L(G) given by

(X + Y )(t) = lim
n→∞

(X (
1
n

)Y (
1
n

))[nt]

and that L(G) becomes an R-vector space under this addition and
the aforementioned scalar multiplication. (In this talk, we will just
sketch the proof of the existence of X + Y .)

2 Equip L(G) with its compact-open topology and show that L(G)
becomes a topological vector space.
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Hilbert’s Fifth Problem

Plan of Proof for NSS implies Lie (cont’d)

3. Show that the exponential map

X 7→ X (1) : L(G)→ G

maps an open neighborhood of O in L(G) onto an open
neighborhood of 1 in G. Then since G is locally compact, so is
L(G), whence we conclude that dimR(L(G)) <∞. (This also
shows that G is locally euclidean.)

4. Use the adjoint representation of G on L(G) to make G into a Lie
group.
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Hilbert’s Fifth Problem

Adjoint Representation

Let Ad : G→ Aut(L(G)) be defined by Ad(g)(X ) = aXa−1, where
(aXa−1)(t) := aX (t)a−1. Then Ad is a continuous group
morphism.
Since G/ ker(Ad) continuously embeds into Aut(L(G)) ∼= Gln(R),
where n := dimR(L(G)), von Neumann’s Theorem implies that
G/ ker(Ad) is a Lie group.
If G is connected (which we may suppose it is), then
ker(Ad) = center(G), which is abelian (and NSS), and hence a Lie
group by Pontrjagin.
Now use a result of Kuranishi: if 1→ N → G→ G/N → 1 is an
exact sequence that admits “local cross sections”, where N is an
abelian Lie group and G/N is a Lie group, then G is a Lie group.
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Hilbert’s Fifth Problem

Powers of Infinitesimals

If a,b ∈ µ, then a · b ∼ e · e = e, i.e. ab ∈ µ. It then follows that an ∈ µ
for any n ∈ N. What about infinite powers of a?

Internal Induction

If A ⊆ N∗ is internal, contains 0 and is closed under the successor
operation, then A = N∗.
Let a ∈ µ and let A = {σ ∈ N∗ | aσ ∈ µ}. Then A contains 0 and is
closed under successor by continuity of multiplication. The problem is
that A is not internal since µ is an external set. Hence we cannot
conclude that aσ ∈ µ for all σ ∈ N∗. (In fact, G is NSS if and only if
whenever a ∈ µ satisfies aσ ∈ µ for all σ ∈ N∗, it was because a = 1.)
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Hilbert’s Fifth Problem

Landau Notation

We will need to use the following notation:

Notation

Suppose i ∈ Z∗ and σ ∈ N∗ \ {0}.
Say i = o(σ) if |i | < σ

n for every n ∈ N;
Say i = O(σ) if |i | < nσ for some n ∈ N.
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Hilbert’s Fifth Problem

Infinitesimal Generators of 1-ps’s

Fix σ ∈ N∗ \ N.

Definition

Let G(σ) := {a ∈ µ | ai ∈ µ for all i = o(σ)}. Note that 1 ∈ G(σ) and
G(σ) is closed under inverses.

Fact

If a ∈ G(σ), then ai ∈ Gns for all i = O(σ).

Definition

For a ∈ G(σ), define Xa : R→ G by Xa(t) := st(a[tσ]).

Fact

Xa is a 1-ps of G.
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Hilbert’s Fifth Problem

Infinitesimal Generators of 1-parameter subgroups of
G (cont’d)

Question

Which elements of L(G) are of the form Xa for some a ∈ G(σ)?

Answer

All of them! Suppose X ∈ L(G) and let a := X ( 1
σ ) ∈ µ. Then if i = o(σ),

we have ai = X ( i
σ ) ∈ µ, whence a ∈ G(σ), and

Xa(t) = st(a[tσ]) = st(X (
[tσ]

σ
)) = X (t).
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Hilbert’s Fifth Problem

Infinitesimal Generators of 1-parameter subgroups of
G (cont’d)

One can ask the question “When does Xa = O?” This happens if and
only if ai ∈ µ for all i = O(σ).

Definition

Go(σ) := {a ∈ µ | ai ∈ µ for all i = O(σ)}.

So we have Xa = O if and only if a ∈ Go(σ) and observe that
1 ∈ Go(σ), Go(σ) ⊆ G(σ) and Go(σ) is closed under inverses.
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Hilbert’s Fifth Problem

Gleason-Yamabe Lemmas

One next wants to show that G(σ) is a subgroup of µ with normal
subgroup Go(σ) and use this to help us put a group law on L(G). To do
this and more, we will need to know more about the growth rates of
powers of elements of these sets. The ingenious idea of Hirschfeld
was to translate the very technical lemmas of Gleason and Yamabe
into clear and concise statements about such growth rates.

Lemma

Let a1, . . . ,aσ be an internal sequence in G∗ such that all
ai ∈ Go(σ). Then a1 · · · aσ ∈ µ.
If a ∈ G(σ) and b ∈ Go(σ), then (ab)i ∼ ai for all i ≤ σ.
Suppose a,b ∈ G(σ) are such that ai ∼ bi for all i ≤ ν. Then
a−1b ∈ Go(σ).
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Hilbert’s Fifth Problem

Consequences of the Gleason-Yamabe Lemmas

The following theorem follows rather easily from the aforementioned
consequences of the Gleason-Yamabe Lemmas.

Theorem

G(σ) is a group and Go(σ) is a normal subgroup;
The quotient group G(σ)/Go(σ) is abelian;
For a,b ∈ G(σ), Xa = Xb if and only if a−1b ∈ Go(σ);
The surjective map a 7→ Xa : G(σ)→ Go(σ) induces a bijection
aGo(σ) 7→ Xa : G(σ)/Go(σ)→ L(G).
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Hilbert’s Fifth Problem

Group Law on L(G)

We make L(G) into an abelian group with the operation +σ so that the
aforementioned bijection is an abelian group isomorphism:

Xa +σ Xb := Xab, i.e. (X +σ Y )(t) = st((X (
1
σ

)Y (
1
σ

))[σt]).

Fact

If σ, ν ∈ N∗ \ N, then X +σ Y = X +ν Y for all X ,Y ∈ L(G).

Corollary

X + Y exists in L(G), i.e. limn→∞(X ( 1
n )Y ( 1

n ))[nt] exists for every t ∈ R.

This follows from the aforementioned fact, using that a sequence (an)
from G converges if and only if aσ ∼ aν for all σ, ν ∈ N∗ \ N.
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Hilbert’s Fifth Problem

Local groups

Definition

A local group is a tuple (G,1, ι,p) where:
G is a Hausdorff topological space, 1 ∈ G;
ι : Λ→ G is continuous, where Λ ⊆ G is open;
p : Ω→ G is continuous, where Ω ⊆ G ×G is open;
1 ∈ Λ, {1} ×G ⊆ Ω, G × {1} ⊆ Ω;
p(1, x) = p(x ,1) = x ;
if x ∈ Λ, then (x , ι(x)) ∈ Ω, (ι(x), x) ∈ Ω, and

p(x , ι(x)) = p(ι(x), x) = 1;

if (x , y), (y , z) ∈ Ω and (p(x , y), z), (x ,p(y , z)) ∈ Ω, then

p(p(x , y), z) = p(x ,p(y , z)).
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Hilbert’s Fifth Problem

A Simple Example of a Local Group

Let G = (−1,1). Then G is a local group under addition, where we
take Λ = G and Ω = {(x , y) ∈ G | x + y ∈ G}.

More generally, if H is a topological group and U is an open
neighborhood of the identity, then we obtain a local group G := U,
where the local group operations are those inherited from H,
Λ = {x ∈ G | x−1 ∈ G} and Ω = {(x , y) ∈ G ×G | xy ∈ G}.

These are very special types of local groups, called globalizable local
groups.
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Hilbert’s Fifth Problem

Not every local group is globalizable

Consider the local Lie group given by G = R,

Ω = {(x , y) ∈ R2 | |xy | 6= 1}, Λ = G \ {1
2
,1},

with multiplication and inversion

p(x , y) =
2xy − x − y

xy − 1
, ι(x) =

x
2x − 1

.

(Note that 0 is the neutral element.) Then G is not globalizable since
p(x ,1) = p(1, x) = 1 for all x 6= ±1.

Let U = {|x | < 1
2}. Then x 7→ x

x−1 : U → R shows that G|U is
globalizable.
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Hilbert’s Fifth Problem

The Local H5

Theorem (G.)

If (G,1, ι,p) is a locally euclidean local group, then G is locally
isomorphic to a Lie group.

Since not every local group is globalizable, the Local H5 is not an
immediate Corollary of the H5. In fact, the statement “every locally
euclidean local group is locally isomorphic to a group” is
equivalent to the above theorem.
In 1957, Jacoby claimed a proof of the Local H5, but his proof was
discovered to be wrong by Plaut about 20 years ago. Jacoby
essentially assumes that every local group G is globally
associative: given any finite sequence of elements from G, if
there are two ways of introducing parentheses such that both
products thus formed exist, then the two products are in fact equal.
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Hilbert’s Fifth Problem

Associativity

Suppose a,b, c,d reside in a local group G and a(b(cd)) and
((ab)c)d) are both defined. Why aren’t they necessarily equal, as
Jacoby thought they were?

The usual calculation:

a(b(cd)) = (ab)(cd) = ((ab)c)d .
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Hilbert’s Fifth Problem

Associativity

Suppose a,b, c,d reside in local group G and a(b(cd)) and ((ab)c)d)
are both defined. Why aren’t they necessarily equal, as Jacoby
thought they were?

a(b(cd)) = (ab)(cd) = ((ab)c)d .

Problem: (ab)(cd) may not be defined!

Theorem (Mal’cev)

G is globally associative if and only if G is globalizable.

Olver constructs local Lie groups which are n-associative but not
(n + 1)-associative for any n ≥ 3.
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Hilbert’s Fifth Problem

NSA and the Local H5

If one had to give a simple reason as to why NSA is especially useful
in the local setting, it would be that (µ,p|µ) is an actual group.

Moreover, an elementary saturation argument shows that for every
a ∈ µ, there is N ∈ N∗ \N so that ai is defined for all i ≤ N in the sense
that all ways of forming parentheses around the constant sequence (a)
of length N yield defined products that are all equal. In this way, one
can mimic many of the arguments used in the proof of the H5, often
with much more care needed and with proofs doubling in length.
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Hilbert’s Fifth Problem

Local Yamabe

Theorem (Yamabe)

If G is a locally compact group, then there is an open subgroup G′ of G
such that, for every open neighborhood U of the identity, there is a
normal compact subgroup H of G contained in U such that G′/H is
NSS (and hence a Lie group).

Theorem (G.)

If G is a locally compact local group, then there is a restriction G′ of G
and a compact normal subgroup N of G′ such that G′/N has NSS (and
hence is locally isomorphic to a Lie group).

Corollary (van den Dries, G.)

Every locally compact local group is locally isomorphic to a group.
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Hilbert’s Fifth Problem

An Application: Approximate groups

Definition

Let G be a (discrete) group, A a finite subset of G, and K ∈ R≥1. We
say that A is a K -approximate group if 1 ∈ A, A = A−1, and A · A can
be covered by at most K translates of A.

Example

A 1-approximate group is the same as a finite subgroup.

Example

If (G,+) is abelian, v1, . . . , vr ∈ G, and N1, . . . ,Nr ∈ R>0, then the set
{a1v1 + · · ·+ ar vr : a1, . . . ,ar ∈ Z, |ai | ≤ Ni} is called a generalized
arithmetic progression. It is a 2r -approximate group. (r is called the
rank of the progression.)
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Hilbert’s Fifth Problem

Freiman’s Theorem

Theorem (Freiman)

If (G,+) is a torsion-free abelian group and A is a K -approximate
group in G, then there is a generalized arithmetic progression P of
rank OK (1) in G such that P ⊆ 4A, |A| �K |P|.

Theorem (Green-Rusza)

If (G,+) is an abelian group and A is a K -approximate group in G,
then there is a finite subgroup H of G and a generalized arithmetic
progression P of rank OK (1) in G/H such that π−1(P) ⊆ 4A and
|A|/|H| �K |P|. (Here, π : G→ G/H.)

What about approximate groups in nonabelian groups?
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Hilbert’s Fifth Problem

Noncommutative progressions

Let G be a group.

Definition

If a1, . . . ,ar ∈ G and N1, . . . ,Nr ∈ R>0, then the set of all words in the
alphabet a±1

1 , . . . ,a±1
r such that the total number of occurrences of ai

and a−1
i combined are no more than Ni is called a noncommutative

progression.

Noncommutative progressions need not be approximate groups (think
free groups!). However, if a1, . . . ,ar generate a nilpotent group of step
s, then the noncommutative progression (which is then called a
nilprogression) is an Or ,s(1)-approximate group.
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Hilbert’s Fifth Problem

Classifying Approximate Groups

Theorem (Breuillard, Green, Tao; Hrushovski)

If A is a K -approximate group in G, then there is a finite subgroup H of
G and a nilprogression P of rank OK (1) and step OK (1) in N(H)/H
such that π−1(P) ⊆ A4 and |A|/|H| �K |P|. (π : N(H)→ N(H)/H.)

π−1(P) is called a coset nilprogression.

Actually, this theorem holds for approximate groups in (discrete) local
groups, once this is suitably defined. This is not merely to make things
more general; this passage to local groups is crucial in the proof to
prevent “accidentally large torsion.”
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Hilbert’s Fifth Problem

Key ideas in the proof

Suppose that the theorem is false. Then one takes an ultraproduct
of counterexamples to obtain a so-called ultra approximate group.
To obtain a contradiction, one needs to show that an ultra
approximate group A contains a nondegenerate ultra coset
nilprogression P with |A| < |P| (as nonstandard natural numbers).
Hrushrovski’s idea was that an ultra approximate group A naturally
admits a locally compact “model” A→ L, which captures the
“coarse” or “macroscopic” behavior of the ultra approximate group.
Using the local Yamabe theorem, one can replace this locally
compact model with a Lie model.
Now one can use arguments by induction on dim(L) together with
a certain “escape norm” on the ultra approximate group.
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Infinite-Dimensional Lie Theory

1 Nonstandard analysis

2 Hilbert’s Fifth Problem

3 Infinite-Dimensional Lie Theory
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Infinite-Dimensional Lie Theory

Banach-Lie groups and algebras

Definition

1 If E is a Banach space, then a Hausdorff space M is a smooth
E-manifold if every point in M has an open neighborhood
homeomorphic to an open set in E and such that the transition
maps are smooth (in the sense of Frèchet). A smooth Banach
manifold is a smooth E-manifold for some Banach space E .

2 A Banach-Lie group is a smooth Banach manifold which is also a
group in which the group operations are smooth.

3 A Banach-Lie algebra is a Banach space g which is also a Lie
algebra and such that the bracket operation [·, ·] : g× g→ g is
continuous.
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Infinite-Dimensional Lie Theory

Enlargeable Banach-Lie Algebras

As in the finite-dimensional situation, if G is a Banach-Lie group,
then the tangent space at 1, T1(G), can naturally be equipped with
the structure of a Banach-Lie algebra.
However, unlike the finite-dimensional situtation, it is not the case
that every Banach-Lie algebra is the Lie algebra of a Banach-Lie
group. (van-Est, Korthagen)

Definition

A Banach-Lie algebra is called enlargeable if it is isomorphic to the
Banach-Lie algebra of a Banach-Lie group.

How can we tell if a Banach-Lie algebra is enlargeable?
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Infinite-Dimensional Lie Theory

Pestov’s Theorem on Localizing Enlargeability

Theorem (Pestov)

Suppose that g is a Banach-Lie algebra. Suppose that there exists a
directed family H of closed subalgebras of g and a neighborhood V of
0 in g such that:

1
⋃
H is dense in g;

2 Each h ∈ H is enlargeable and if H is the corresponding simply
connected Banach-Lie group, then the exponential map
expH : h→ H is injective when restricted to V .

Then g is enlargeable.

Corollary

If g is a Banach-Lie algebra with a dense subalgebra that is locally
finite-dimensional or locally solvable, then g is enlargeable.
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Infinite-Dimensional Lie Theory

Idea of the Proof

For an internal subalgebra h of g∗ (e.g. h = g∗), set

hfin := {x ∈ h | ‖x‖ is finite}

and
µh := {x ∈ h | ‖x‖ is infinitesimal}.

Then hfin is a real Lie algebra and µh is a Lie ideal of hfin.

We call the quotient Lie algebra ĥ := hfin/µh the nonstandard hull
of h. Equipping ĥ with the norm ‖x + µh‖ := st(‖x‖), one can
show, using saturation, that ĥ is a Banach-Lie algebra.
Note that there is an injective morphism of Banach-Lie algebras

ι : g→ ĝ∗.
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Infinite-Dimensional Lie Theory

Idea of the Proof (cont’d)

Set X :=
⋃
H. By density of X and saturation, there is a

hyperfinite subset A of X such that, for every g ∈ g, X ∩ µ(g) 6= ∅.
(Hyperfinite means A ∈ Pfin(X )∗, or A is an ultraproduct of finite
sets.)
Since H is directed, there is, by transfer, h ∈ H∗ such that A ⊆ h.
It follows that the embedding ι : g→ ĝ∗ takes values in ĥ. It
suffices to show that ĥ is enlargeable (as closed subalgebras of
enlargeable Banach-Lie algebras are enlargeable.)
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Infinite-Dimensional Lie Theory

Idea of the Proof (cont’d)

By transfer, h is internally enlargeable and if H is the
corresponding internal Lie group with exponential map
expH : h→ H, then expH � V ∗ is injective.
Set Hfin := 〈expH(hfin)〉 and µH := expH(µh). Using some facts
about the BCH series, one can show that Hfin is a group and µH is
a normal subgroup of Hfin. Set Ĥ := Hfin/µH . Then Ĥ is the
nonstandard hull of H.
One can show that there is a map êxp : ĥ→ Ĥ defined by
êxp(x + µh) := expH(x)µH . Using the injectivity of expH � V ∗, one
can show that êxp is injective on a neighborhood of the origin in ĥ.
Again, using the BCH series and êxp, one can make Ĥ into a
Banach-Lie group for which ĥ is its Lie algebra, proving that ĥ is
enlargeable.
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Infinite-Dimensional Lie Theory

Locally exponential Lie groups and algebras

Banach-Lie theory is too specialized to cover natural examples
from infinite-dimensional geometry, e.g. C∞(M,G), where M is a
compact manifold and G is a Banach-Lie group.
The correct generality is to allow locally convex spaces as the
model spaces (topological vector spaces whose topology is given
by a family of seminorms).
Locally exponential Lie groups are the Lie groups that possess a
smooth exponential map that are moreover local diffeomorphisms.
Locally exponential Lie algebras are the Lie algebras which are
natural candidates to be the Lie algebra of a locally exponential
Lie group.
Neeb asked if Pestov’s theorem holds for locally exponential Lie
algebras.
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Infinite-Dimensional Lie Theory

An Analog of Pestov’s Theorem

Theorem (G.)

Suppose g is a locally exponential Lie algebra, H is a family of closed
subalgebras of g, V is a neighborhood of 0 in g and p is a continuous
seminorm on g satisfying:

1
⋃
H is dense in g;

2 for each h ∈ H, there is a locally exponential Lie group H such
that L(H) ∼= h;

3 for each h ∈ H, if H is a connected locally exponential Lie group
such that L(H) ∼= h, then expH |V ∩ h : V ∩ h→ H is injective;

4 (expH({x ∈ h| p(x) < 1}))2 ⊆Wh, where Wh is an open
neighborhood of 1 contained in expH(V );

5 mU is uniformly continuous on {p < 1}×2

6 mU is uniformly smooth at finite points.
Then g is enlargeable.
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Infinite-Dimensional Lie Theory

Locally uniform groups

More recently, I have noticed that a nonstandard hull construction
is possible for topological groups that are uniformly continuous
near the identity
For simplicity, suppose that G is a metrizable group with
left-invariant metric d whose multiplication is uniformly continuous
on Bd (e, ε).
Set Uf := {x ∈ G∗ | st(d(x ,e)) < ε} and Û := Uf/ ≈.
Then Û is a local group, called the nonstandard hull of G.
One can show that, if G is a Banach-Lie group, then Û is locally
isomorphic to Pestov’s nonstandard hull of G.
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Infinite-Dimensional Lie Theory

Locally uniform groups

Enflo wanted to pursue the study of Hilbert’s fifth problem in infinite
dimensions. His philosophy was that every concept needed a uniform
version. For example:

Definition

A topological group G is uniformly NSS if there is a neighborhood U of
the identity such that, for every neighborhood V of the identity, there is
nV ∈ N such that x /∈ V ⇒ xn /∈ U for some n ≤ nV .

Theorem (G.)

If G is a metrizable locally uniform group, then G is uniformly NSS if
and only if Û is NSS (for an appropriately chosen U).
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Infinite-Dimensional Lie Theory

Nonstandard methods in infinite-dimensional Lie
theory

Infinite-dimensional Lie theory (in its current form) is a very young
subject with many interesting open problems. For example:

Locally compact subgroup problem

Suppose that G is an infinite-dimensional Lie group with locally
compact subgroup H. Is H a (necessarily finite-dimensional) Lie
group?

It is my hope that nonstandard methods (such as the nonstandard hull
construction) will help answer some of these questions.
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