## A Proof by Induction

Theorem: In a game with scores of 4 and 3,5 is the greatest impossible number. That is, if $n>5$, there exist $a$ and $b$ such that $4 a+3 b=m$.

Note that 5 cannot be represented in the form $4 a+3 b /$
Let $P(k)$ be the proposition: for every $m$ with $5<m \leq k$ there exist $a$ and $b$ such that $4 a+3 b=m$.

Proof. We will prove by induction on $n \geq 8$ that $P(n)$ holds. We need $P(8)$.
Claim 1: $P(13)$ holds.
Check Claim 1: $6=2 \cdot 3,7=4+3,8=2 \cdot 4$.
Claim 2: $\mathrm{P}(\mathrm{k})$ implies $\mathrm{P}(\mathrm{k}+1)$.
Proof of Claim 2. Let $m=(k+1)-3$. By induction there exist there exist $a^{\prime}$ and $b^{\prime}$ such that $4 a^{\prime}+3 b^{\prime}=m$. That is, $4 a^{\prime}+3 b^{\prime}=k-2$. So, $4 a^{\prime}+3 b^{\prime}+3=k+1$. So if we set $a=a^{\prime}$ and $b=b^{\prime}+1,4 a+3 b=k+1$.

Since for any $k$, we have shown $P(k)$ implies $P(k+1)$ by the mathematical induction we have shown: for all $n, P(n)$.

