Math 215: Introduction to Advanced Mathematics

Solution to trigonometry problem from Problem Set 1

Assignment: Write a careful complete solution of the following typical problem from a trigonometry text. Be sure you are clear about what K refers to.

Show $\sin A = \sin B$ if and only if A = B + 360K or A + B = 180 + 360K.

Correct statement of problem (replacing the ambiguity of a typical high school text).

Show $\sin A = \sin B$ if and only if for some integer K, A = B + 360K or A + B = 180 + 360K.

Logic fact: We will use the observation made in class that for any propositions $P, Q: (\exists k)[P(k) \text{ or } Q(k)]$ is equivalent to $(\exists k)P(k)$ or $(\exists k)Q(k)$.

Answer: Note first that for every integer K and any angle A, $\sin A = \sin(A + 360K)$. (We will discuss a more rigorous proof later in the semester but consider that fact as given now.)

Clearly if for some K, A = B + 360K, $\sin A = \sin B$, since for all K, $\sin B = \sin(B + 360K)$. Moreover, if for some K, A = 180 - B + 360K, $\sin A = \sin B$ since $\sin A = \sin(180 - A)$ and for all K, $\sin(180 - A) = \sin(180 - A + 360K)$.

We have proved: if for some integer K, A = B + 360K or A + B = 180 + 360K then $\sin A = \sin B$. (The 'logic fact' allows us to distribute the quantifier.) Now we must show the converse.

We first consider the case $0 \le A, B < 360$.

Suppose first both A and B are angles with between $0 \le A \le 180$ and $0 \le B \le 180$. Then, looking at the unit circle, $\sin A = \sin B$ implies either A = B or A = 180 - B.

There is an additional possibility. If $0 \le A, B < 360$, by examining the unit circle we see either the pair A and B satisfy the case in the last paragraph or both satisfy 180 < A, B < 360. And then there are two possibilities, A = B or A + B = 540. The second possibility can be written A + B = 180 + 360.

We now reduce to the case $0 \le A, B < 360$.

Suppose $\sin A = \sin B$.

For any angle A there is an integer K and an A' with $0 \le A' < 360$ so that A = A' + 360K. So we can choose A', B', with 0 < A', B' < 360 and integers K_1, K_2 so that $A = A' + 360K_1$ and $B = B' + 360K_2$.

Now $\sin A = \sin B$ implies $\sin A' = \sin B'$ and so by our treatment of angles between 0 and 360, we know there are three possibilities. A' = B', A' + B' = 180, A' + B' = 540.

Now by substituting we will see that in the first case for some K, A = B + 360K and in the other two cases, for some K, A + B = 180 + 360K. Again, the logic fact allows us to do find K separately for each case.

We carry out the detail of the substitution only for the third case. We have assumed $A = A' + 360K_1$ and $B = B' + 360K_2$ and by choice of case A' + B' = 540.

We have $A = A' + 360K_1$. That is, $A = (540 - B') + 360K_1$ and therefore $A = (540 - (B - 360K_2)) + 360K_1$. So $A = 180 - B + 360(K_1 - K_2 + 1)$. We have the result with $K = K_1 - K_2 + 1$.