Math 215: Introduction to Advanced Mathematics

Solution to trigonometry problem from Problem Set 1
Assignment: Write a careful complete solution of the following typical problem from a trigonometry text. Be sure you are clear about what K refers to.

Show $\sin A=\sin B$ if and only if $A=B+360 K$ or $A+B=180+360 K$.
Correct statement of problem (replacing the ambiguity of a typical high school text).

Show $\sin A=\sin B$ if and only if for some integer $K, A=B+360 K$ or $A+B=180+360 K$.

Logic fact: We will use the observation made in class that for any propositions $P, Q:(\exists k)[P(k)$ or $Q(k)]$ is equivalent to $(\exists k) P(k)$ or $(\exists k) Q(k)$.

Answer: Note first that for every integer K and any angle $A, \sin A=$ $\sin (A+360 K)$. (We will discuss a more rigorous proof later in the semester but consider that fact as given now.)

Clearly if for some $K, A=B+360 K, \sin A=\sin B$, since for all K, $\sin B=\sin (B+360 K)$. Moreover, if for some $K, A=180-B+360 K$, $\sin A=\sin B$ since $\sin A=\sin (180-A)$ and for all $K, \sin (180-A)=$ $\sin (180-A+360 K)$.

We have proved: if for some integer $K, A=B+360 K$ or $A+B=$ $180+360 K$ then $\sin A=\sin B$. (The 'logic fact' allows us to distribute the quantifier.) Now we must show the converse.

We first consider the case $0 \leq A, B<360$.
Suppose first both A and B are angles with between $0 \leq A \leq 180$ and $0 \leq B \leq 180$. Then, looking at the unit circle, $\sin A=\sin B$ implies either $A=B$ or $A=180-B$.

There is an additional possibility. If $0 \leq A, B<360$, by examining the unit circle we see either the pair A and B satisfy the case in the last paragraph or both satisfy $180<A, B<360$. And then there are two possibilities, $A=$ B or $A+B=540$. The second possibility can be written $A+B=180+360$.

We now reduce to the case $0 \leq A, B<360$.
Suppose $\sin A=\sin B$.
For any angle A there is an integer K and an A^{\prime} with $0 \leq A^{\prime}<360$ so that $A=A^{\prime}+360 K$. So we can choose A^{\prime}, B^{\prime}, with $0<A^{\prime}, B^{\prime}<360$ and integers K_{1}, K_{2} so that $A=A^{\prime}+360 K_{1}$ and $B=B^{\prime}+360 K_{2}$.

Now $\sin A=\sin B$ implies $\sin A^{\prime}=\sin B^{\prime}$ and so by our treatment of angles between 0 and 360, we know there are three possibilities. $A^{\prime}=B^{\prime}, A^{\prime}+$ $B^{\prime}=180, A^{\prime}+B^{\prime}=540$.

Now by substituting we will see that in the first case for some $K, A=$ $B+360 K$ and in the other two cases, for some $K, A+B=180+360 K$. Again, the logic fact allows us to do find K separately for each case.

We carry out the detail of the substitution only for the third case. We have assumed $A=A^{\prime}+360 K_{1}$ and $B=B^{\prime}+360 K_{2}$ and by choice of case $A^{\prime}+B^{\prime}=540$.

We have $A=A^{\prime}+360 K_{1}$. That is, $A=\left(540-B^{\prime}\right)+360 K_{1}$ and therefore $A=\left(540-\left(B-360 K_{2}\right)\right)+360 K_{1}$. So $A=180-B+360\left(K_{1}-K_{2}+1\right)$. We have the result with $K=K_{1}-K_{2}+1$.

