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1
Introduction

I will of course rewrite the introduction when the monograph is finished so
it reflects what I ended up with not what I thought would end up with.
But here are the aims now.

The following themes are interweaved.
1. I want to expound Shelah’s categoricity theorem for Lω1,ω. Very

vaguely, I think of this as having two parts. a) Categoricity in enough
powers implies excellence; b) excellence implies categoricity transfers.

Most of what is written on this line lies in part b). In order for a) +
b) to yield categoricity in a small initial segment of the cardinals yields
categoricity in all cardinals, our analysis of b) cannot assume the existence
of arbitrarily large models. We motivate the exposition by doing Zilber’s
special case of quasiminimal excellence and connecting it with his conjec-
tures on complex exponentiation. But the natural axiomatization of Zilber’s
classes are not in Lω1,ω but in Lω1,ω(Q). So we would like to have the re-
sults for Lω1,ω(Q). I don’t believe this can be done with out much more
sophisticated techniques, e.g. λ-frames of [36, 35, 34]; they are beyond the
scope of these notes. But the basic properties of abstract elementary classes
are developed so as to prepare for study of e.g. frames. An unwritten chap-
ter will connect Lω1,ω(Q) with AEC’s. At the moment we only notice that
the first two or three obvious ways to translate are wrong.

Eventually, we will do a).
2. A different perspective is the conjecture that for reasonably well-

behaved classes, categoricity should be either eventually true or eventually
false. Here we introduce the notion of AEC and prove the presentation the-
orem and categoricity implies stability Some of the results in this general
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framework are applied in the Lω1,ω-case. For this part, the assumption of
arbitrarily large models is entirely reasonable. Again we expound some sim-
pler versions of this result (using strong amalgamation hypotheses). This
too leads to λ-frames.

3. In the midst of this I intend to describe the taxonomy of infinitary cat-
egoricity - the relations among various infinitary languages, homogeneous
model theory, excellent classes, AEC etc.

I don’t organize around techniques (as Keisler did) but there are sev-
eral techniques that eventually are expounded; combinatorial geometries,
EM-models and then the introduction of splitting to get an independence
relation generalizing a combinatorial geometry.

The only quoted material is very elementary model theory (say a small
part of Marker’s book), Morley’s omitting types theorem, and two or three
theorems from the Keisler book including Lopez-Escobar.

In addition to the fundamental papers of Shelah, this exposition depends
heavily on various works by Grossberg and Lessmann.
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2
Combinatorial Geometries

Definition 2.1 A pregeometry is a set G together with a dependence re-
lation

cl : P(G) → P(G)

satisfying the following axioms.
A1. cl(X) =

⋃{cl(X ′) : X ′ ⊆fin X}
A2. X ⊆ cl(X)
A3. cl(cl(X)) = cl(X)
A4. If a ∈ cl(Xb) and a 6∈ cl(X), then b ∈ cl(Xa).
If points are closed the structure is called a geometry.

Definition 2.2 A geometry is homogeneous if for any closed X ⊆ G and
a, b ∈ G−X there is a permutation of G which preserves the closure relation
(i.e. an automorphism of the geometry) which fixes X pointwise and takes
a to b.

Exercise 2.3 If G is a homogeneous geometry, X, Y are maximally inde-
pendent subsets of G, there is an automorphism of G taking X to Y .

Definition 2.4 1. The structure M is strongly minimal strongly min-
imal if every first order definable subset of any elementary extension
M ′ of M is finite or cofinite.

2. The theory T is strongly minimal if it is the theory of a strongly
minimal structure.

3. a ∈ acl(X) if there is a first order formula with finitely solutions over
X which is satisfied by a.
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Definition 2.5 Let X,Y be subsets of a structure M . An elementary iso-
morphism from X to Y is 1-1 map from X onto Y such that for every first
order formula φ(v), M |= φ(x) if and only if M |= φ(fx).

Exercise 2.6 Find X,Y subsets of a structure M such that X and Y are
isomorphic but not elementarily isomorphic.

Exercise 2.7 Let X,Y be subsets of a structure M . If f takes X to Y is
an elementary isomorphism, f extends to an elementary isomorphism from
acl(X) to acl(Y ).

Exercise 2.8 Show a complete theory T is strongly minimal if and only if
it has infinite models and

1. algebraic closure induces a pregeometry on models of T ;

2. any bijection between acl-bases for models of T extends to an isomor-
phism of the models.

Exercise 2.9 A strongly minimal theory is categorical in any uncountable
cardinality.
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3
Abstract Quasiminimality

Since I have and will use the term:

Definition 3.1 A structure M is κ-sequence homogeneous if for any a,b ∈
M of length less than κ, if (M, a) ≡ (M,b) then for every c, there exists d
such that (M, ac) ≡ (M,bd).

An abstract quasiminimal class is a class of structures that satisfy the
following five conditions, which we expound leisurely.

Assumption 3.2 (Condition I) Let K be a class of L-structures which
admit a monotone idempotent closure operation cl taking subsets of M ∈ K
to substructures of M such that cl has finite character.

Strictly speaking, we should write clM (X) rather than cl(X) but we will
omit the M where it is clear from context.

Definition 3.3 Let A be a subset of H, H ′ ∈ K. A map from X ⊂ H −A
to X ′ ⊂ H ′ − A is called a partial A-monomorphism if its union with the
identity map on A preserves quantifier free formulas.

Freqently, but not necessarily we will have A = G which is in K.

Definition 3.4 Let Ab ⊂ M and M ∈ K. The (quantifier-free) type
of b over A in M , written tpqf (b/A;M) ( tpqf (b/A; M)), is the set of
(quantifier-free) first-order formulas with parameters from A true of b in
M .

Exercise 3.5 Why is M a parameter in Definition 3.4?
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Exercise 3.6 Let Ab ⊂ M , Ab′ ⊂ M ′ with M,M ′ ∈ bK. Show there is
a partial A-monomorphism taking a′ to b′ if and only if tpqf (b/A;M) =
tpqf (b′/A; M ′).

The next assumption connects the geometry with the structure on mem-
bers of K.

Assumption 3.7 (Condition II) Let G ⊆ H, H ′ ∈ K with G empty or
in K.

1. If f is a bijection between X and X ′ which are separately cl-
independent (over G) subsets of H and H ′ then f is a partial G-
monomorphism.

2. If f is a partial G-monomorphism from H to H ′ taking X ∪ {y} to
X ′ ∪ {y′} then y ∈ cl(XG) iff y′ ∈ cl(X ′G).

Condition 3.7.2) has an a priori unlikely strength: quantifier free formulas
determine the closure; in practice, the language is specifically expanded to
guarantee this condition. Part 2 of Assumption 3.7 implies that each M
with G ⊆ M ∈ K is finite sequence homogeneous over G.

Assumption 3.8 (Condition III : ℵ0-homogeneity over models)
If f is a partial G-monomorphism from H to H ′ with finite domain X
then for any y ∈ H there is y′ in an extension H ′′ ∈ K of H ′ such that
f ∪ {〈y, y′〉} extends f to a partial G-monomorphism.

If H and H ′ have finite dimension, we might need to extend H ′. Alter-
native formulations would be to only make the assumption for y ∈ clH(X)
or to require that H ′ have infinite dimension.

Question 3.9 Let a, b be independent over the empty set. Suppose fa, fb

map cl(a) (cl(b)) into a K-structure H. Is fa ∪ fb a monomorphism? (We
prove below that the answer is yes assuming exchange; is exchange neces-
sary?

Definition 3.10 We say a closure operation satisfies the countable closure
condition if the closure of a countable set is countable.

We easily see:

Lemma 3.11 Suppose Assumptions I, II, and III are satisfied by cl on an
uncountable structure M ∈ K that satisfies the countable closure condition.

1. For any finite set X ⊂ M , if a, b ∈ M − cl(X), a, b realize the same
Lω1,ω type over X.

2. Every Lω1,ω definable subset of M is countable or cocountable. This
implies that a ∈ cl(X) iff it satisfies some φ over X, which has only
countably many solutions.
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Proof. Condition 1) follows directly from Conditions II and III (Assump-
tion 3.7 and Assumption 3.8) by constructing a back and forth. To see
condition 2), suppose both φ and ¬φ had uncountably many solutions with
φ defined over X. Then there are a and b satisfying φ and ¬φ respectively
and neither is in cl(X); this contradicts 1).

The ω-homogeneity yields by an easy induction:

Lemma 3.12 Suppose Assumptions I II and III hold. Let G ∈ K be count-
able and suppose G ⊂ H1,H2 ∈ K.

1. If X ⊂ H−G, X ′ ⊂ H−G are finite and f is a G-partial monomor-
phism from X to X ′ then f extends to a G-partial monomorphism
from clH(GX) to clH′(GX ′).

2. If X is independent set of cardinality at most ℵ1, and f is a G-
partial monomorphism from X to X ′ then f extends to a G-partial
monomorphism from clH(GX) to clH′(GX ′).

Proof. The first statement is immediate from homogeneity. The second
follows by induction from the first (by replacing G by cl(GX0) for X0 a
countable initial segment of X). ¤3.12

For algebraic closure the cardinality restriction on X is unnecessary. We
will have to add Assumption 3.8 to remove the restriction in excellent
classes.

Assumption 3.13 (Condition IV) cl satisfies the exchange axiom: y ∈
cl(Xx)− cl(X) implies x ∈ cl(Xy).

Zilber omits exchange in the fundamental definition but it arises in the
natural contexts he considers so we make it part of quasiminimal excellence.
Note however that the examples of first order theories with finite Morley
rank greater than 1 (e.g. [2]) fail exchange.

In the following definition it is essential that ⊂ be understood as proper
subset.

Definition 3.14 1. For any Y , cl−(Y ) =
⋃

X⊂Y cl(X).

2. We call C (the union of) an n-dimensional cl-independent system if
C = cl−(Z) and Z is an independent set of cardinality n.

To visualize a 3-dimensional independent system think of a cube with the
empty set at one corner A and each of the independent elements z0, z1, z2 at
the corners connected to A. Then each of cl(zi, zj) for i < j < 3 determines
a side of the cube: cl−(Z) is the union of these three sides; cl(Z) is the
entire cube.

Assumption 3.15 (Condition V) Let G ⊆ H, H ′ ∈ K with G empty
or in K. Suppose Z ⊂ H − G is an n-dimensional independent system,
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C = cl−(Z), and X is a finite subset of cl(Z). Then there is a finite C0

contained in C such that: for every G-partial monomorphism f mapping
X into H ′, for every G-partial monomorphism f1 mapping C into H ′, if
f ∪ (f1 ¹ C0) is a G-partial monomorphism, f ∪ f1 is also a G-partial
monomorphism.

We can rephrase the conclusion as for any a ∈ cl(Z) there is a finite
Ca ⊆ C such that tpqf (a/Ca;H) implies tpqf (a/C; H).

Thus Condition IV, which is the central point of excellence, asserts (for
dimension 3) that the type of any element in the cube over the union of the
three given sides is determined by the type over a finite subset of the sides.
The ‘thumbtack lemma’ of Chapter 4 verifies this condition in a specific
algebraic context. Here is less syntactic version of Assumption 3.8

Definition 3.16 We say M ∈ K is prime over the set X ⊂ M if every
partial monomorphism of X into N ∈ K extends to a monomorphism of
M into N .

Remark 3.17 Note that in first order logic this corresponds to ‘alge-
braically prime’ rather than ‘elementarily prime’. In the first order con-
text algebraically prime is a notoriously unstable (in a nontechnical sense)
concept.

Lemma 3.18 Let G ⊆ H, H ′ ∈ K with G empty or in K and countable.
Suppose Z ⊂ H −G is an n-dimensional independent system, C = cl−(Z),
then cl(Z) ⊆ H is prime over C.

Proof. Fix an embedding f from C into H ′ containing G. We must extend
f to f̂ mapping cl(Z) into H ′. We can enumerate cl(X) as ai : i < ω. Let
An denote {ai : i < n}. Now define by induction an increasing sequence
of finite sets Bn : n < ω such that tpqf (An/Bn;H) implies tpqf (An/C; H)
and

⋃
n<ω Bn = C. Now, using only part of Lemma 3.12 1), construct an

increasing family of maps fn with the domain of fn = An ∪ Bn. Then the
union of these functions is the required embedding. ¤3.18

Theorem 3.19 Let K be a quasiminimal excellent class and suppose
H, H ′ ∈ K satisfy the countable closure condition. Let A,A′ be cl-
independent subsets of H, H ′ with cl(A) = H, cl(A′) = H ′, respectively,
and ψ a bijection between A and A′. Then ψ extends to an isomorphism
of H and H ′.

Suppose further, that some model of K contains an infinite cl-
independent set. Then the class of K-structures which satisfy the countable
closure condition is categorical in every uncountable cardinality.

The remainder of this section is devoted to the proof of Theorem 3.19

Notation 3.20 Fix a countable subset A0 and write A as the disjoint
union of A0 and a set A1; without loss of generality, we can assume ψ
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is the identity on clH(A0) and work over G = clH(A0). We may write
cl∗(X) to abbreviate cl(A0X).

Lemma 3.21 Suppose X, Y are subsets of A1. Suppose b ∈ cl(A0X) and
c ∈ cl(A0Y ) and p(b, c,g) for some quantifier-free type q (over g ∈ G).
Then there is a map π into cl(A0Y ) whose domain includes bcg, that fixes
cg, and such that p(bπcg) holds.

Proof. Choose finite A∗ ⊂ A0 such that g ∈ cl(A∗), b ∈ cl(A∗X), and
c ∈ cl(A∗Y ). Let G0 = cl(A∗Y ). Extend the identity map on G0 to π1 with
domain G0X by mapping X−Y into A0−(A∗Y ). By Assumption 3.7 .1, π1

is a partial G0-monomorphism. By Lemma 3.12 π1 extends to a partial G0-
monomorphism π from cl(A∗XY ) into cl∗(Y ). Clearly π has the required
property. ¤3.21

Lemma 3.22 Suppose X,Y are subsets of A1 and that ψX and ψY are
each partial G-monomorphisms from H into H ′ with domψX = cl(A0X)
and domψY = cl(A0Y ) that agree on cl(A0X) ∩ cl(A0Y ). Then ψX ∪ ψY

is a partial G-monomorphism.

Proof. By Lemma 3.12 there is a partial G-monomorphism ψXY which
extends ψX and maps cl∗(XY ) into H ′. Another partial map on cl∗(X) ∪
cl∗(Y ) is given by ψX ∪ ψY . It suffices to show that for any b ∈ cl∗(X),
g ∈ G and c ∈ cl∗(Y ) and any quantifier free R, H ′ |= R(ψX(b), ψXY (c),g)
if and only if H ′ |= R(ψX(b), ψY (c),g). So we are finished if we apply the
following lemma to H ′. To apply the Lemma, note that ψXY ◦ ψ−1

Y is a
partial G-monomorphism taking ψY (c) to ψXY (c).

Lemma 3.23 Let X, Y, Y ′ ⊆ A1. Let b ∈ cl(A0X), c ∈ cl(A0Y ), and
c′ ∈ cl(A0Y

′). Suppose f is a partial G-monomorphism taking c to c′, then
f is a partial cl∗(X) monomorphism.

Proof. If not there exists b ∈ cl∗(X) and g ∈ G and a quantifier free
R such that R(b, c,g) ∧ ¬R(b, c′,g). Now apply Lemma 3.21, to obtain
a map π into cl(A0Y Y ′) which fixes c, c′,g and such that R(bπ, c,g) ∧
¬R(bπ, c′,g). This contradicts that c, c′ are partially isomorphic over G.
¤3.23

¤3.22

We have by straightforward induction.

Corollary 3.24 Suppose 〈Xi : i < m〉 are subsets of A and that each ψXi

is a partial G-monomorphisms from H into H ′ with dom ψXi = cl(A0Xi)
and that for any i, j, ψXi and ψXj agree whenever both are defined. Then
ψX ∪ ψY is a partial G-monomorphism.

Proof of Theorem 3.19. Note that H = limX⊂A;|X|<ℵ0 cl(X). We have
the obvious directed system on {cl(X) : X ⊂ A; |X| < ℵ0}. So the theorem
follows immediately if for each finite X we can choose ψX : cl(X) → H ′ so
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that X ⊂ Y implies ψX ⊂ ψY . We prove this by induction on |X|. Suppose
|Y | = n + 1 and we have appropriate ψX for |X| < n + 1. We will prove
two statements by induction.

1. ψ−Y : cl−(Y ) → H ′ defined by ψ−Y =
⋃

X⊂Y ψX is a monomorphism.

2. ψ−Y extends to ψY defined on cl(Y ).

The first step is done by induction using Corollary 3.24 with the X ⊂ Y
with |X| = n as the Xi. The exchange axiom is used to guarantee that the
maps ψX agree where more than one is defined. The second step follows
by Lemma 3.18.

We have shown that the isomorphism type of a structure in K with
countable closures is determined by the cardinality of a basis for the geom-
etry. If M is an uncountable model in K that satisfies the countable closure
condition, the size of M is the same as its dimension so there is at most
one model in each uncountable cardinality which has countable closures. It
remains to show that there is at least one.

Lemma 3.25 If there is an H ∈ K which contains an infinite cl-
independent set, then there are members of K of arbitrary cardinality which
satisfy the countable chain condition.

Proof. Let L∗ be a countable fragment of Lω1,ω containing the sentence
axiomatizing K and the formulas defining independence. Let X be a count-
able independent set of H, H1 the closure of Xa where a is independent
from X and let H0 = clH1(X). Note that H0 ≺L∗ H1 by a back and
forth. Since cl is L∗-definable H0 = clH0(X). So we have a model which
is isomorphic to a proper L∗-elementary extension. As in [42] since all
members of K with countably infinite dimension are isomorphic, one can
construct a continuous L∗-elementary increasing chain of members of K
for any α < ℵ1. Thus we get a model of power ℵ1. Note that each Hℵ1 has
countable closures since the closure of any countable set is contained in a
model isomorphic to Hω. Continue the same construction, to construct a
model of power ℵ2. Now we use the categoricity established above to pass
limit ordinals. Since the chain is L∗-elementary, each Hα ∈ K. Now we get
arbitrarily large models using the categoricity at κ to construct a model of
power κ+. ¤3.19

Note that a sentence ψ can define a quasiminimal excellent class without
being ℵ0-categorical. But we could extend ψ to ψ′ - the Scott sentence of
the model with countably infinite cl-dimension and attain ℵ0-categoricity.

The following corollary seems to rely on the categoricity argument. The
key is Condition II (??) and for countable G it follows from Lemma 3.12.
But in general we use Theorem 3.19.

Corollary 3.26 Let K be a quasiminimal excellent class, with G ⊂ H, H ′

all in K. If a ∈ H, a′ ∈ H ′ realize the same quantifier free type over G (i.e.
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there is a G-monomorphism taking a to a′) then there is a K-isomorphism
from cl(Ga) onto cl(Ga′).

Thus (G, a, H) and (G, a′,H ′) realize the same Galois type.

Exercise 3.27 Define a notion of almost quasiminimality analogous to
almost strong minimality and prove that almost quasiminimal classes are
categorical in all powers ([44]).

Question 3.28 Zilber’s proof of Theorem 3.19 is considerably more com-
plicated. I think this is because he does not assume exchange. How would
you modify the argument here to avoid the use of exchange?
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4
Covers of the Multiplicative Group of Z

The first approximation to a quasiminimal axiomatization of complex ex-
ponentiation considers short exact sequences of the following form.

0 → Z → H → F ∗ → 0. (4.1)

H is a torsion-free divisible abelian group (written additively), F is an
algebraically closed field, and exp is the homomorphism from (H, +) to
(F ∗, ·), the multiplicative group of F . We can code this sequence as a
structure for a language L:

(H, +, E, S),

where E(h1, h2) iff exp(h1) = exp(h2) and we pull back sum by the
defining H |= S(h1, h2, h3) iff F |= exp(h1) + exp(h2) = exp(h3). Thus H
now represents both the multiplicative and additive structure of F .

To guarantee Assumption 3.7.2 we expand the language further. Let
exp : H 7→ F ∗. For each affine variety over Q, V̂ (x1, . . . xn), we
add a relation symbol V interpreted by H |= V (h1, . . . , hn) iff F |=
V (exp(h1), . . . , exp(hn)). This includes the definition of S mentioned above;
we have some fuss to handle the pullback of relations which have 0 in their
range.

Lemma 4.1 There is an Lω1,ω-sentence Σ such that there is a 1-1 corre-
spondence between models of Σ and sequences (4.1).
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The sentence asserts first that the quotient of H by E with + corre-
sponding to × and S to + is an algebraically closed field. We use Lω1,ω

to guarantee the kernel is 1-generated. This same proviso insures that the
relevant closure condition has countable closures.

Definition 4.2 For X ⊂ H |= Σ,

cl(X) = exp−1(acl(exp(X))

where acl is the field algebraic closure in F .

Using this definition of closure the key result of [43] asserts:

Theorem 4.3 Σ is quasiminimal excellent with the countable closure con-
dition and categorical in all uncountable powers.

Our goal is this section is to prove this result modulo one major algebraic
lemma. We will frequently work directly with the sequence (1) rather than
the coded model of Σ. Note that (1) includes the field structure on F .
That is, two sequences are isomorphic if there are commuting maps H to
H ′ etc. where the first two are group isomorphisms but the third is a field
isomorphism.

It is easy to check that Conditions I and IV and countable closures are
satisfied: cl gives a combinatorial geometry such that the countable closure
of countable sets is countable. We need more notation about the divisible
closure (in the multiplicative group of the field to understand the remaining
conditions.

Definition 4.4 By a divisibly closed multiplicative subgroup associated
with a ∈ C∗, aQ, we mean a choice of a multiplicative subgroup containing
a and isomorphic to the additive group Q.

Definition 4.5 We say b
1
m
1 ∈ b

Q
1 , . . . b

1
m

` ∈ b
Q
` ⊂ C∗, determine the iso-

morphism type of b
Q
1 , . . . b

Q
` ⊂ C∗ over the subfield k of C if given sub-

groups of the form c
Q
1 , . . . c

Q
` ⊂ C∗ and φm such that

φm : k(b
1
m
1 . . . b

1
m

` ) → k(c
1
m
1 . . . c

1
m

` )

is a field isomorphism it extends to

φ∞ : k(bQ1 , . . . b
Q
` ) → k(cQ1 , . . . c

Q
` ).

To see the difficulty consider the following example.

Example 4.6 Let a1 and a2 be linearly independent over Q complex num-
bers such that (a1−1)2 = a2. Suppose φ, which maps Q(a1, a2) to Q(c1, c2),
is a field isomorphism. φ does not extend to an isomorphism of their divis-
ible hulls, we might have a1 − 1 =

√
a2 but c1 − 1 = −√c2.
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As in Lecture 3, for G a subgroup of H, H ′ and H,H ′ |= Σ, a partial
function φ on H is called a G-monomorphism if it preserves L-quantifier
free formulas with parameters from G.

Fact 4.7 Suppose b1, . . . b` ∈ H and c1, . . . c` ∈ H ′ are each linearly in-
dependent sequences (from G) over Q. Let Ĝ be the subfield generated
by exp(G). If Ĝ(exp(b1)Q, . . . exp(b`)Q) ≈ Ĝ(exp(c1)Q, . . . exp(c`)Q) as
fields, then mapping bi to ci is a G-monomomorphism preserving each va-
riety V .

Proof. Let G ⊂ H and suppose rational qi, ri are rational numbers, hi ∈
H −G, gi ∈ G. Then

H |= V (q1b1, . . . q`b`, r1g1, . . . rmgm)

iff
Ĥ |= V̂ (exp(q1b1), . . . exp(q`b`), exp(r1g1), . . . exp(rmgm))

iff
Ĝ(exp(b1)Q, . . . exp(b`)Q, exp(g1)Q, . . . exp(gm)Q)

|= V̂ (exp(q1b1), . . . exp(q`b`), exp(r1g1), . . . exp(rmgm)).

From this fact, it is straightforward to see that Condition II in the def-
inition of quasiminimal excellence holds. For II.i) we need that there is
only one type of a closure-independent sequence. But Fact 4.7 implies that
for b ∈ H to be closure independent, the associated exp(b) must be al-
gebraically independent and of course there is a unique type of an alge-
braically independent sequence. For II.ii) holds since added to language of
Σ predicates for the pull-back of all quantifier-free relations on the field F .
(Zilber doesn’t do this.)

For Condition III and the excellence condition we need an algebraic re-
sult. In the following,

√
1 denotes the subgroup of roots of unity. We call

this result the thumbtack lemma based on the following visualization of
Kitty Holland. The various nth roots of b1, . . . bm hang on threads from the
bi. These threads can get tangled; but the theorem asserts that by sticking
in a finite number of thumbtacks one can ensure that the rest of strings
fall freely. The proof involves the theory of fractional ideals of number
fields, Weil divisors, and the normalization theorem. For a1, . . . ar in C, we
write gp(a1, . . . ar) for the multiplicative subgroup generated by a1, . . . ar.
The following general version of the theorem is applied for various sets of
parameters to prove quasiminimal excellence.

In the following Lemma we write
√

1 for the group of roots of unity. If
any of the Li are defined, the reference to

√
1 is redundant. We write gp(a)

for the multiplicative subgroup generated by a.

Remark 4.8 Let k be an algebraically closed subfield in C and let a ∈ C−
k. A field theoretic description of the relation of a to k arises by taking the
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irreducible variety over k realized by a. a is a generic realization of variety
given by a finite conjunction φ(x,b) of polynomials generating the ideal
in k[x] of those polynomials which annihilate a. From a model theoretic
standpoint we can say, choose b so that the type of a/k is the unique
nonforking extension of tp(a/b). We use the model theoretic formulation
below. See [1], page 39.

Theorem 4.9 (thumbtack lemma) [43]
Let P ⊂ C be a finitely generated extension of Q and L1, . . . Ln alge-

braically closed subfields of the algebraic closure P̂ of P . Fix multiplicatively

divisible subgroups a
Q
1 , . . . a

Q
r with a1, . . . ar ∈ P̂ and b

Q
1 , . . . b

Q
` ⊂ C∗. If

b1 . . . b` are multiplicatively independent over gp(a1, . . . ar) ·
√

1 ·L∗1 · . . . L∗n
then for some m b

1
m
1 ∈ b

Q
1 , . . . b

1
m

` ∈ b
Q
` ⊂ C∗, determine the isomorphism

type of b
Q
1 , . . . b

Q
` over P (L1, . . . Ln,

√
1, a
Q
1 , . . . a

Q
r ).

Lemma 4.10 Condition III of quasiminimal excellence holds.

Proof. We must show: If G |= Σ and f is a partial G-monomorphism from
H to H ′ with finite domain X = {x1, . . . , xr} then for any y ∈ H there is y′

in some H ′′ with H ′ ≺K H ′′ such that f ∪ {〈y, y′〉} extends f to a partial
G-monomorphism. Since G |= Σ, exp(G) is an algebraically closed field.
For each i, let ai denote exp(xi) and similarly for x′i, a

′
i. Choose a finite

sequence d ∈ exp(G) such that the sequence (a1, . . . ar) is independent (in
the forking sense) from exp(G) over d and tp(a1, . . . ar)/d) is stationary.
Now we apply the thumbtack lemma. Let P0 be Q(d). Let n = 1 and L1 be
the algebraic closure of P0. We set P0(d, a1, . . . ar) as P . Take b1 as exp(y)
and set ` = 1.

Now apply Lemma 4.9 to find m so that b
1
m
1 determines the algebraic type

of (b1)Q over L1(a
Q
1 , . . . a

Q
r ) = P0(L1, a

Q
1 , . . . a

Q
r ). Let f̂ denote the map f

induces from Ĥ to Ĥ ′ over Ĝ. Choose b′1
1
m to satisfy the quantifier free field

type of f̂(tp(b
1
m
1 /L1(a

Q
1 , . . . a

Q
r ). Now by Lemma 4.9, f̂ extends to field iso-

morphism between L1(a
Q
1 , . . . a

Q
r , b

Q
1 )) and L1((a′1)

Q, . . . (a′r)
Q, (b′1)

Q).
Since the sequence a1, . . . ar) is independent (in the forking sense) from

exp(G) over L1, we can extend this map to take exp(G)(aQ1 , . . . a
Q
r , b

Q
1 )

to exp(G)((a′1)
Q, . . . (a′r)Q, (b′1)

Q) and pull back to find y′; this suffices by
Fact 4.7.

¤4.10

Note there is no claim that y′ ∈ H ′ and there can’t be.
One of the key ideas discovered by Shelah in the investigation of non-

elementary classes is that in order for types to be well-behaved one may
have to make restrictions on the domain. (E.g., we may be able to amal-
gamate types over models but not arbitrary types.) This principle is illus-
trated by the following definition and result of Zilber.
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Definition 4.11 C ⊆ F is finitary if C is the union of the divisible closure
(in C∗) of a finite set and finitely many algebraically closed fields.

Now we establish Condition IV, excellence. Note that this is a stronger
condition than excellence since there is no independence requirement on
the Gi.

Lemma 4.12 Let G1, . . . Gn ⊂ H all be models of Σ and suppose each
has finite cl-dimension. If h1, . . . h` ∈ G− = cl(G1 ∪ . . . Gn) then there is
finite set A ⊂ G− such that any φ taking h1, . . . , h` into H which is an
A-monomorphism is also a G−-monomorphism.

Let Li = exp(Gi) for i = 1, . . . , n; bq
j = exp(qhj) for j = 1, . . . , ` and

q ∈ Q. We may assume the hi are linearly independent over the vector space
generated by the Gi; this implies the bi are muliplicatively independent over
L∗1 ·L∗2 · . . . L∗n. Now apply the thumbtack lemma with r = 0. This gives an

m such that the field theoretic type of b
1
m
1 , . . . , b

1
m

` determines the quantifier
free type of (h1, . . . , h`) over G−. So we need only finitely many parameters
from G− and we finish.

To prove the following result, apply the thumbtack lemma with the Li

as the fields and the ai as the finite set.

Corollary 4.13 Any almost finite n-type over a finitary set is a finite n-
type.

Since we have established all the conditions for quasiminimal excellence,
we have proved Theorem 4.3.

Keisler[16] proved Morley’s categoricity theorem for sentences in Lω1,ω,
assuming that the categoricity model was ℵ1-homogeneous. This theorem
is the origin of the study of homogeneous model theory which is well ex-
pounded in e.g. [4]. We give two examples showing the homogeneity does
not follow from categoricity. Marcus [24] showed:

Fact 4.14 There is a first order theory T with a prime model M such that

1. M has no proper elementary submodel.

2. M contains an infinite set of indiscernibles.

Exercise 4.15 Show that the Lω1,ω-sentence satisfied only by atomic mod-
els of the theory T in Fact 4.14 has a unique model.

Example 4.16 Now construct an Lω1,ω-sentence ψ whose models are par-
titioned into two sets; on one side is an atomic model of T , on the other
is an infinite set. Then ψ is categorical in all infinite cardinalities but no
model is ℵ1-homogeneous because there is a countably infinite maximal in-
discernible set.
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Now we see that the example of this chapter has the same inhomogeneity
property.

Consider the basic diagram:

0 → Z → H → F ∗ → 0. (4.2)

Let a be a transcendental number in F ∗. Fix h with exp(h) = a and
define an = exp h

n +1 for each n. Now choose hn so that exp(hn) = an. Let
Xr = {hi : i ≤ r}. Note that am = a

1
m + 1 where we have chosen a specific

mth root.

Claim 4.17 pr = tp(h/Xr) is a principal type.

Proof. We make another application of the thumbtack Lemma 4.9 with
Q(exp(span(Xr)) as P , a1, . . . ar as themselves, all Li are empty, and a as
b1. By the lemma there is an m such that a

1
m determines the isomorphism

type of aQ over P (aQ1 , . . . a
Q
r ). That is if φm is the minimal polynomial of

a
1
m over P , (∃y)φm(y) ∧ ym = x generates tp(a/ exp(span(Xr))). Pulling

back by Lemma 4.7, we see tp(h/Xr) is principal and even complete for
Lω1,ω. In particular, for any m′ ≥ m, any two m′th roots of a have the
same type over exp(Xr). But for sufficiently large r, one of these m′th
roots is actually in Xr so tp(a/Xr) does not imply p = tp(a/X) for any
X. That is, tp(a/X) is not implied by its restriction to any finite set. And
by Lemma 4.7 this implies tpω1,ω(h/X) is not implied by its restriction to
any finite set.

Now specifically to answer the question of Keisler [16], page 123, we need
to show there is a sentence ψ in a countable fragment L∗ of Lω1,ω such
that ψ is ℵ1-categorical but has a model with is not (ℵ1, L

∗)-homogeneous.
Fix L∗ as a countable fragment containing the categoricity sentence for
‘covers’. We have shown no formula of Lω1,ω (let alone L∗) with finitely
many parameters from X implies p. By the omitting types theorem for L∗,
there is a countable model H0 of ψ which contains an L∗-equivalent copy
X ′ of X and omits the associated p′. By categoricity, H0 imbeds into H.
But H also omits p′. As, if h′ ∈ H, realizes p′, then exp(h′) ∈ acl(X ′) ⊆ H0

so since the kernel of exp is standard, h′ ∈ H0, contradiction. Thus the
type p′ cannot be realized so H is not homogeneous.

USED?

Definition 4.18 1. Let V be an irreducible variety over C ⊆ F . The
sequence associated with V over C is a sequence

{V 1
m : m ∈ ω}
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such that V 1 = V and for any m,n ∈ ω, raising to the mth power
maps V

1
nm to V

1
n .

2. If V ′ ⊆ V are varieties over C, the pair

τ = (V − V ′, {V 1
m : m ∈ ω})

is called an almost finite n-type over C.

3. Zilber calls a principal type given by a difference of varieties V − V ′

a finite n-type over C.

Sketch of Proof of Theorem 4.3. Another application of the thumb-
tack lemma gives directly the homogeneity conditions of Condition III (As-
sumption 3.8). Exchange, ( Assumption 3.13) , is immediate from the defini-
tion of closure (4.2). Finitary sets are more general than the n-dimensional
independent systems in the definition of quasiminimal excellence, since the
subsets don’t have to be independent. So if X is a sequence associated with
a variety V over an n-dimensional independent system C, Corollary 4.13
allows us to reduce X to a formula over a finite set yielding Excellence (As-
sumption 3.15). So we finish by Theorem 3.19; the quasimimimal excellence
implies categoricity.
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5
Abstract Elementary Classes

‘Non-elementary classes’ is a general term for any logic other than first
order. Some of the most natural extensions of first order logic arise by
allowing conjunctions of various infinite lengths or cardinality quantifiers.
In this chapter we introduce a precise notion of ‘abstract elementary class’
AEC which generalizes some of these logics. In this monograph we pursue a
dual track of proving certain result for general AEC and some for very spe-
cific logics, especially Lω1,ω and Lω1,ω(Q). In this chapter we introduce the
semantic notion of an AEC and prove a surprising syntactic representation
theorem for such classes.

When Jónsson generalized the Fräisse construction to uncountable car-
dinalities [13, 14], he did so by describing a collection of axioms, which
might be satisfied by a class of models, that guaranteed the existence of
a homogeneous-universal model; the substructure relation was an integral
part of this description. Morley and Vaught [26] replaced substructure by
elementary submodel and developed the notion of saturated model. Shelah
[38, 39] generalized this approach in two ways. He moved the amalgamation
property from a basic axiom to a constraint to be considered. (But this was
a common practice in universal algebra as well.) He made the substructure
notion a ‘free variable’ and introduced the notion of an Abstract Elemen-
tary Class: a class of structures and a ‘strong’ substructure relation which
satisfied variants on Jonsson’s axioms. To be precise

Definition 5.1 A class of L-structures, (K,≺K ), is said to be an abstract
elementary class: AEC if both K and the binary relation ≺K are closed
under isomorphism and satisfy the following conditions.
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• A1. If M ≺K N then M ⊆ N .

• A2. ≺K is a partial order on K.

• A3. If 〈Ai : i < δ〉 is ≺K -increasing chain:

1.
⋃

i<δ Ai ∈ K;
2. for each j < δ, Aj ≤

⋃
i<δ Ai

3. if each Ai ≺K M ∈ K then
⋃

i<δ Ai ≤ M .

• A4. If A,B, C ∈ K, A ≺K C, B ≺K C and A ⊆ B then A ≺K B.

• A5. There is a Löwenheim-Skolem number κ(K) such that if A ⊆
B ∈ K there is a A′ ∈ K with A ⊆ A′ ≺K B and |A′| < κ(K).

Property A5 is sometimes called the coherence property and sometimes
‘the funny axiom’. Perhaps best is the Tarski-Vaught property since it easily
seen to follow in the first order case as an application the Tarski-Vaught test
for elementary submodel. However, Shelah sometimes uses ‘Tarski-Vaught’
for the union axioms.

Exercise 5.2 Show the class of well-orderings with ≺K taken as end
extension satisfies the first four properities of an AEC. Does it have a
Löwenheim number?

Exercise 5.3 The models of a sentence of first order logic or any countable
fragment of Lω1,ω with the associated notion of elementary submodel as ≺K
gives an AEC with Löwenheim number ℵ0.

The logics L(Q) and Lω1,ω(Q) are not immediately seen as AEC. We
discuss the connections in Chapter 6.

Notation 5.4 For any class of model K, I(K, λ) denotes the number of
isomorphism types of members of K with cardinality λ.

We call the next result: the presentation theorem. It allows us to re-
place the entirely semantic description of an abstract elementary class by
a syntactic one. I find it extraordinary that the notion of an AEC which
is designed to give a version of the Fräisse construction and thus saturated
models, also turns out to allow the use of the second great model theoretic
technique of the 50’s: Ehrenfeucht-Mostowski models.

Theorem 5.5 If K is an AEC with Lowenheim number LS(K) (in a vo-
cabulary τ with |τ | ≤ LS(K)), there is a vocabulary τ ′ with cardinality
|LS(K)|, a first order τ ′-theory T ′ and a set of 2LS(K) types Γ such that:

K = {M ′ ¹ τ : M ′ |= T ′ and M ′ omits Γ}.
Moreover, if M ′ is a τ ′′-substructure of N ′ where M ′, N ′ satisfy T ′ and

omit Γ then M ′ ¹ τ ≺K N ′ ¹ τ .
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Proof. Let τ ′ contain n-ary function symbols Fn
i for n < ω and i <

LS(K). We take as T ′ the theory which asserts only that its models are
nonempty. For any τ ′-structure M ′ and any a ∈ M , let M ′

a denote the
subset of M ′ enumerated as {Fn

i (a) : i < LS(K)} where n = lg(a); the
only requirement on this enumeration is that the first n-elements are a.
The isomorphism type of ′a is determined by the quantifier free τ ′-type of
a. Note that M ′

a may not be either a τ ′ or even a τ -structure. Let Γ be
the set of quantifier free τ ′-types of finite tuples a such that M ′

a ¹ τ 6∈ K
or for some b ⊂ a, M ′

b ¹ τ 6≺K M ′
a ¹ τ .

We claim T ′ and Γ suffice. That is, if K ′ = {M ′ ¹ τ : M ′ |=
T ′ and M ′ omits Γ} then K = K ′. Let the τ ′-structure M ′ omit Γ; in
particular, each M ′

a is a τ -structure. Write M ′ as a direct limit of the
finitely generated τ -structures M ′

a. (These may not be closed under the
operations of τ ′.) By the choice of Γ, each M ′

a ¹ τ ∈ K and if a ⊆ a′,
M ′

a ¹ τ ≺K M ′
a′ ¹ τ , and so by the unions of chains axioms M ′ ¹ τ ∈ K.

Conversely, if M ∈ K we define by induction on |a|, structures Ma for
each finite subset a of M . Let M∅ be any ≺K -substructure of M with
cardinality LS(K) and let the {F 0

i : i < LS(K)} be constants enumerating
the universe of M∅. Given a sequence b of length n+1, choose Mb ≺K M
with cardinality LS(K) containing all the Ma for a ⊂ b of smaller car-
dinality. Let {Fn+1

i (b) : i < LS(K)} enumerate the universe of Mb (and
give the function the same value on any ordering of the range of b). Now
each Ma ¹ τ ∈ K and if b ⊂ c, Mb ≺K Mc so M ′ omits Γ as required.

The moreover holds for the partial τ ′-structures M ′
a directly by the

choice of Γ and extends to arbitrary structures by the union of chain axioms
on an AEC. In more detail, we have M ′ is a direct limit of finite structures
M ′

a and N ′ is a ≺K -direct limit of N ′
a where M ′

a = N ′
a for a ∈ M be-

cause M ′ ¹ τ is a τ -substructure of N ′ ¹ τ . Each M ′
a ¹ τ ≺K N ′ ¹ τ so the

direct limit M ′ ¹ τ is a strong submodel of N ′ ¹ τ . ¤5.5

We have represented K as a PCΓ class in the following sense.

Definition 5.6 A PC(T, Γ) class is the class of reducts to τ ⊂ τ ′ of models
of a first order theory τ ′-theory which omit all types from the specified
collection Γ of types in finitely many variables over the empty set.

We write PCΓ to denote such a class without specifying either T or
Γ. And we write K is PC(λ, µ) if K can be presented as PC(T, Γ) with
|T | ≤ λ and |Γ| ≤ µ. In the simplest case, we say K is λ-presented if K is
PC(λ, λ).

In this language we have shown any AEC K is 2LS(K)-representable.
Keisler [16] proves a number of strong results for PCΓ-classes (more

precisely for what he calls PCδ-classes which are somewhat more special).
In particular, he proves a categoricity transfer theorem between cardinals
κ and λ of certain specific forms. (See Theorem 24 of Keislerbook). But



24 5. Abstract Elementary Classes

the following example of Silver highlights the weakness of PCΓ-classes and
the need to study AEC.

Example 5.7 Let K be class of all structures (A,U) such that |A| ≤ 2|U |.
Then K is actually a PC-class. But K is κ categorical if and only if κ = iα

for a limit ordinal α. (i.e. µ < κ implies 2µ < κ.) Thus there are PC-classes
for the which both the categoricity spectrum and its complement are cofinal
in all cardinals.

Exercise 5.8 Show that if K is an AEC in a similarity type of cardinality
λ, K can be presented as a PCΓ(λ, 2λ)-class.

Remark 5.9 1. There is no use of amalgamation in this theorem.

2. The only penalty for increasing the size of the language or the
Löwenheim number is that the size of L′ and the nunber of types
omitted; thus θ must be chosen larger.

3. We can (and Shelah does) observe that the class of pairs (M, N)
with M ≺K N forms a PCΓ(ℵ0, 2ℵ0) but it seems that the moreover
clause of Theorem 5.5 is a more useful version. See Theorem 11.9 and
its applications. The moreover clause appears in Grossberg’s account:
[7] and in Makowsky’s [23].

We will see many problems can be reduced to classes of structures of the
following sort.

Definition 5.10 1. A finite diagram or EC(T, Γ) class is the class of
models of first order theory which omit all types from a specified col-
lection Γ of types in finitely many variables over the empty set.

2. EC(T, Atomic) denotes the class of atomic models of T .

The last definition abuses the EC(T, Γ) notation, since for consistency,
we really should write nonatomic. But atomic is shorter and emphasizes
that we are restricting to the atomic models of T .

Some authors attach the require that K satisfy amalgamation over sets
to the definition of finite diagram. We stick with the original definition
from [27] and reserve the more common term, homogeneous model theory
for the classes with set amalgamation.

Exercise 5.11 The models of an EC(T, Γ) with the ordinary first order
notion of elementary submodel as ≺K gives an AEC with Löwenheim num-
ber ℵ0.

Restricting an AEC to models of bounded cardinality or even to a sin-
gle cardinal provides an important tool for studying the entire class. We
introduce here two notions of this sort. In [33], the notion of λ-frame is a
strengthening of what we call here a weak AEC by introducing an abstract
notion of dependence.
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Definition 5.12 1. For any AEC, K we write, e.g. K≤µ for the asso-
ciated class of structures in K of cardinality at most K.

2. Note that if µ ≥ LS(K), (K<µ) and K≤µ have all properties of an
AEC except the union of chain axioms apply only to chains of length
of length ≤ µ (< µ).

3. We call such an object a weak AEC.

Exercise 5.13 If (K,≺K ) is an abstract elementary class then the re-
striction of K and ≺K to models of cardinality λ gives a weak abstract
elementary class.

The next two exercises are worked out in detail in [33].

Exercise 5.14 If Kλ is a weak abstract elementary class show (K,≺K )
is an AEC with Löwenheim number λ if K and ≺K are all direct limits
of Kλ and ≺Kλ

respectively.

Exercise 5.15 Show that if the AEC’s K1 and K2 have Lówenheim num-
ber λ and the same restriction to models of size λ they are identical above
λ.

Jónsson’s axioms included the amalgamation property and the joint em-
bedding property. Here we consider them as additional properties; estab-
lishing amalgamation from hypotheses on the spectrum of K will be a
major theme.

We say K has the amalgamation property if M ≤ N1 and M ≤ N2 ∈ K
with all three in K implies there is a common strong extension N3 com-
pleting the diagram. Joint embedding means any two members of K have a
common strong extension. Crucially, we amalgamate only over members of
K; this distinguishes this context from the context of homogeneous struc-
tures.

Lemma 5.16 If K<κ has the amalgamation property, then K<κ is par-
titioned into a family of weak-AEC’s that each have the joint embedding
property.

Proof. Define M ' N if they have a common strong extension. Since
K<κ has the amalgamation property, ' is an equivalence relation. It is
not hard to check that each class is closed under short unions and so is a
weak-AEC. ¤5.16
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6
Non-definability of Well-order in
Lω1,ω(Q)

In this chapter we extend the Lopez-Escobar/ Morley theorem [22, 25] on
the nondefinability of well-order from Lω1,ω to Lω1,ω(Q). This extension
seems to be well-known to cognoscenti but I was unable to find it in the
literature. We begin with some background on Lω1,ω(Q) and with attempts
to regard the models of an Lω1,ω(Q) as an AEC.

Definition 6.1 The logic L(Q) adds to first order logic the expression
(Qx)φ(x) which holds if there are uncountably many solutions of φ. The
analogous expansion of Lω1,ω is called Lω1,ω(Q).

Exercise 6.2 The models of a sentence of L(Q) with the associated notion
of elementary submodel as ≺K does not give an AEC.

It is easy to verify the following statement.

Definition 6.3 Let ψ be a sentence in Lω1,ω(Q) and let L∗ be the smallest
countable fragment of Lω1,ω(Q) containing ψ. Define a class (K,≺K ) by
letting K be the class of models of ψ in the standard interpretation. We
consider several notions of strong submodel.

1. M ≺∗ N if

(a) M ≺L∗ N and

(b) M |= ¬(Qx)θ(x, a) then {b ∈ N : N |= θ(b,a) = {b ∈ M : N |=
θ(b,a).

2. M ≺∗∗ N if
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(a) M ≺L∗∗ N ,

(b) M |= ¬(Qx)θ(x, a) then {b ∈ N : N |= θ(b,a) = {b ∈ M : N |=
θ(b,a), and

(c) M |= (Qx)θ(x, a) implies {b ∈ N : N |= θ(b,a) properly con-
tains {b ∈ M : N |= θ(b,a).

The following exercises are easy but informative.

Exercise 6.4 (K,≺∗) is an AEC.

Exercise 6.5 (K,≺∗∗) is not an AEC. (Hint: Consider the second union
axiom in Definition 5.1 and model with a definable uncountable set.)

Remark 6.6 The Löwenhheim number of the AEC (K,≺∗) defined in
Definition 6.3 is ℵ1. We would like to translate an Lω1,ω(Q)-sentence to
an AEC with Löwenhheim number ℵ0 and which has at least approximately
the same number of models in each uncountable cardinality. This isn’t quite
possible but a suitable substitute can be found. This translation will require
several steps. We begin here with a fundamental result about Lω1,ω(Q); in
Chapter 7, we will complete the translation.

Here are the background results in Lω1,ω. They are proved as Theorem
12 and Theorem 28 from [16].

Theorem 6.7 (Lopez-Escobar, Morley) Let ψ be an Lω1,ω(τ)-
sentence and suppose P, < are a unary and a binary relation in τ . Suppose
that for each α < ω1, there is a model Mα of ψ such that < linear orders
P (Mα) and α imbeds into (P (Mα), <). Then there is a (countable) model
M of ψ such that (P (M), <) contains a copy of the rationals.

If N is linearly ordered, N is an end extension of M if every element of
M comes before every element of N −M .

Theorem 6.8 Let L∗ be a countable fragment of Lω1,ω. If a countable
model M has a proper L∗-elementary end extension, then it has one with
cardinality ℵ1.

These two results can be combined to show that if a sentence in Lω1,ω has
a model that linearly orders a set in order type ω1 then it has a model of
cardinality ℵ1 where the order is not well-founded. We imbed that argument
in proving the same result for Lω1,ω(Q).

Theorem 6.9 Let τ be a similarity type which includes a binary relation
symbol < and a predicate symbol P . Suppose ψ is a sentence of Lω1,ω(Q),
M |= ψ, and the order type of (P (M), <) imbeds ω1. There is a model N
of ψ with cardinality ℵ1 such that the order type of (P (N), <) imbeds Q.
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Proof. Extend the vocabulary τ to τ ′ by adding a function symbol
fφ(x, y) for each formula (Qy)φ(y,x) in Lω1,ω(Q). Expand M to a τ ′-
structure M ′ by interpreting fφ as follows:

1. If M |= (Qy)φ(y, a), (λy)fφ(y, a) is a partial function with domain
the solution set of φ(y, a) onto M .

2. If M |= ¬(Qy)φ(y, a), (λy)fφ(y, a) is a partial function with domain
the solution set of φ(y, a) into the first ω elements of the order.

Now let L∗ be a countable fragment of Lω1,ω which contains every subfor-
mula of ψ which is in Lω1,ω and formulas expressing the properties of the
Skolem functions for Lω1,ω(Q) that we have just defined. Let ψ∗ be an L∗-
sentence which asserts that ‘ω is standard’ and a translation of ψ obtained
by replacing each subformula of ψ of the form (Qy)φ(y, z) (¬(Qy)φ(y, z))
by the formula fφ(y, z) is onto (fφ(y, z) maps into ω). Then for any τ ′-
structure N of cardinality ℵ1 which satisfies ψ∗, N ¹ τ is a model of ψ. Let
the sentence χ assert M is an end extension of P (M). For every α < ω1

there is a model Mα of ψ∗ ∧ χ with order type of (P (M), <) greater than
α. (Start with P as α and alternately take an L∗-elementary submodel and
close down under <. After ω steps we have the P for Mα.) Now by Theo-
rem 6.7 there is countable structure (N0, P (N0)) such that P (N0) contains
a copy of (Q,<) and N0 is an end extension of P (N0). By Theorem 6.8, N0

has an L∗-elementary extension N of cardinality ℵ1. Clearly, P (N) con-
tains a copy of (Q,<) and, as observed, N |= ψ. ¤6.9
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7
Categoricity implies Completeness

The logic Lω1,ω is obtained by extending the formation rules of first order
logic to allow countable conjunctions and disjunctions. A fragment of Lω1,ω

is a set of formulas closed under subformula and the finitary operations (i.e.
finite conjunction, negation and quantification).

7.1 Completeness

Definition 7.1 A sentence ψ in Lω1,ω is called complete if for every sen-
tence φ in Lω1,ω, either ψ |= φ or ψ |= ¬φ.

In first order logic, the theory of a structure is a well-defined object; here
such a theory is not so clearly specified. An infinite conjunction of first order
sentences behaves very much like a single sentence; in particular it satisfies
both the upward and downward Löwenheim Skolem theorems. In contrast,
the conjunction of all Lω1,ω true in an uncountable model may not have a
countable model. In its strongest form Morley’s theorem asserts: Let T be a
first order theory having only infinite models. If T is categorical in some un-
countable cardinal then T is complete and categorical in every uncountable
cardinal. This strong form does not generalize to Lω1,ω; take the disjunc-
tion of a sentence which is categorical in all cardinalities with one that
has models only up to, say, i2. Since Lω1,ω fails the upwards Löwenheim-
Skolem theorem, the categoricity implies completeness argument that holds
for first order sentences fails. However, if the Lω1,ω-sentence ψ is categorical
in κ, then, applying the downwards Löwenheim-Skolem theorem, for every
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sentence φ either ψ → φ or all models of φ have cardinality less than κ.
So if φ and ψ are κ-categorical sentences with a common model of power
κ they are equivalent. Such a sentence in necessarily ℵ0-categorical (us-
ing downward Löwenheim-Skolem). Moreover, every countable structure is
characterized by a complete sentence – its Scott sentence. So if a model
satisfies a complete sentence, it is L∞,ω-equivalent to a countable model.

For purposes of this chapter, one can think of τ = τ ′ in the following.
The greater generality will be used a bit later.

Definition 7.2 Let τ ⊆ τ ′.

1. A τ ′-structure M is L∗-small for L∗ a countable fragment of Lω1,ω(τ)
if M realizes only countably many L∗-types.

2. A τ ′-structure M is τ -small if realizes only countably many Lω1,ω(τ)-
types.

Let M be the only model of power κ of an Lω1,ω-sentence ψ. We want
to find sufficient conditions so that there is a complete sentence ψ′ which
implies ψ and is true in M . We will two such conditions: ψ has arbitrarily
large models; ψ has few models of ℵ1. One key tool for this analysis is a
different representation of Lω1,ω-sentences.

It is quite easy to see:

Exercise 7.3 If ψ is a complete sentence in Lω1,ω in a countable language
L then every model M of ψ realizes only countably many Lω1,ω-types.

In general, an Lω1,ω-type may contain uncountably many formulas. But,

Exercise 7.4 If the structure M realizes only countably many Lω1,ω-types,
then for every tuple a in M there is a formula φ(x) ∈ Lω1,ω such M |=
φ(x) → ψ(x) for each Lω1,ω-formula true of a.

But we will give the short argument for the converse: small models have
Scott sentences. A Scott sentence for a countable model M is a complete
sentence satisfied by M ; it characterizes M up to isomorphism among
countable models. The Scott sentence for an uncountable small model is the
Scott sentence for a countable L∗-submodel of M , where L∗ is the smallest
fragment containing a formula for each type realized in M .

Lemma 7.5 Let M be a τ structure for some countable τ . If ψ is a sen-
tence in Lω1,ω and M is a model of ψ that realizes only countably many
Lω1,ω-types then there is a complete Lω1,ω-sentence ψ′ so that

1. ψ′ |= ψ;

2. M |= ψ′.
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Proof. Let L∗ be the smallest fragment of Lω1,ω containing ψ and the
conjunction of each countable type in Lω1,ω type realized in M . Let N be
a countable L∗-elementary submodel of M and let ψ′ be a Scott sentence
for N . Clearly ψ′ is complete. By the choice of L∗, ψ′ is in L∗; so M |= ψ′.
¤7.5

Theorem 7.6 Let ψ be a sentence in Lω1,ω in a countable vocabulary τ .
Then there is a countable vocabulary τ ′ extending τ , a first order τ ′-theory
T , and a collection of τ ′-types Γ such that reduct is a 1-1 map from the
models of T which omit Γ onto the models of ψ.

Proof. Expand τ to τ ′ by inductively adding a predicate Pφ(x) for each
L∗-formula φ. Fix a model of ψ and expand it to a τ ′-structure by in-
terpreting the new predicates so that they represent each finite Boolean
connective and quantification faithfully: E.g.

P¬φ(x) ↔ ¬Pφ(x),

and
P(∀x)φ(x) ↔ (∀x)Pφ(x),

and that, as far as first order logic can, the Pφ preserve the infinitary
operations: for each i,

PV
i φi(x) → Pφi(x).

Let T be the first order theory of any such model and consider the set Γ
of types

pV
i φi(x) = {¬PV

i φi(x)} ∪ {Pφi(x) : i < ω}.
Now if M is a model of T which omits all the types in Γ, M |τ |= ψ and

each model of ψ has a unique expansion to a model of T which omits the
types in Γ (since this is an expansion by definitions in Lω1,ω). ¤7.6

Since all the new predicates in the reduction described above are Lω1,ω-
definable this is a natural extension of Morley’s procedure of replacing
each first order formula φ by a predicate symbol Pφ, thus guaranteeing
amalgamation over sets for first order categorical T ; the amalgamation
does not follow in this case. In general, finite diagrams do not satisfy the
upper Löwenheim-Skolem theorem.

Since there is a 1-1 correspondence between models of ψ and models of
T that omit Γ, we can reduce spectrum considerations for sentences with
arbitrarily large models to the study of EC(T,Γ)-classes (Definition 5.10).
In addition, we have represented the models of ψ as a PCΓ class in the
following sense.

Definition 7.7 A PC(T, Γ) class is the class of reducts to τ ⊂ τ ′ of models
of a first order theory τ ′-theory which omit all types from the specified
collection Γ of types in finitely many variables over the empty set.
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We write PCΓ to denote such a class without specifying either T or
Γ. And we write K is PC(λ, µ) if K can be presented as PC(T,Γ) with
|T | ≤ λ and |Γ| ≤ µ. In the simplest case, we say K is λ-presented if K is
PC(λ, λ).

We have shown every complete Lω1,ω-sentence in a countable language
is ω presented.

Exercise 7.8 Show that ψ is a sentence in Lλ+,ω in a language of cardi-
nality κ, ψ is µ-presented where µ is the larger of κ and λ.

Exercise 7.9 In general a PCΓ class will not be an AEC class of τ struc-
tures. Why?

Now, modify the proof of Theorem 7.6 to show:

Exercise 7.10 Let ψ be a complete sentence in Lω1,ω in a countable lan-
guage L. Then there is a countable language L′ extending L and a first
order L′-theory T such that reduct is a 1-1 map from the atomic models of
T onto the models of ψ. So in particular, any complete sentence of Lω1,ω

can be replaced (for spectrum purposes) by considering the atomic models
of a first order theory.

7.2 Arbitrarily Large Models

To show a categorical sentence with arbitrarily large models extends to a
complete sentence we need the method of Ehrenfeucht-Mostowski models.
‘Morley’s method’ (Section 7.2 of [6]) is a fundamental technique in first
order model theory. It is essential for the foundations of simplicity theory
and for the construction of indiscernibles in infinitary logic. We quote the
first order version here; in Lemma 12.4, we prove the analog for abstract
elementary classes.

Notation 7.11 1. For any linearly ordered set X ⊆ M where M is a
τ ′-structure and τ ′ ⊇ τ , we write Dτ (X) (diagram) for the set of
τ -types of finite sequences (in the given order) from X. We will omit
τ if it is clear from context.

2. Such a diagram of an order indiscernible set, Dτ (X) = Φ, is called
‘proper for linear orders’ .

3. If X is a sequence of τ -indiscernibles with diagram Φ = Dτ (X) and
any τ model of Φ has built in Skolem functions, then for any lin-
ear ordering I, EM(I, Φ) denotes the τ -hull of a sequence of order
indiscernibles realizing Φ.

4. If τ0 ⊂ τ , the reduct of EM(I, Φ) to τ0 is denoted EMτ0(I,Φ).
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Exercise 7.12 Suppose τ ‘contains Skolem functions’ and X ⊂ M is se-
quence of order indiscernibles with diagram Φ. Show that for any linearly
ordered set Z, EM(Z, Φ) is a model that is τ -elementarily equivalent to M .

Lemma 7.13 If (X, <) is a sufficiently long linearly ordered subset of a
τ -structure M , for any τ ′ extending τ (the length needed for X depends
on |τ ′|) there is a countable set Y of τ ′-indiscernibles (and hence one of
arbitrary order type) such that Dτ (Y ) ⊆ Dτ (X). This implies that the only
(first order) τ -types realized in EM(X,Dτ ′(Y )) were realized in M .

We need a little background on orderings.

Definition 7.14 A linear ordering (X, <) is k-transitive if every map be-
tween increasing k-tuples extends to an order automorphism of (X,<).

Exercise 7.15 Show any 2-transitive linear order is k-transitive for all
finite k.

Exercise 7.16 Show there exist 2-transitive linear orders in every cardi-
nal; hint: take the order type of an ordered field.

Exercise 7.17 If Φ(Y ) is the diagram of a sequence of τ -order indis-
cernibles, show any order isomorphism of Y extends to an automorphism
of the τ -structure EM(Y, Φ).

Definition 7.18 For any model M and a,B contained in M , the Galois-
type of a over B in M is the orbit of a under the automorphisms of M
which fix B.

This notion of Galois type requires an ambient model M . We will speak
indiscriminately of the number of Galois types in M as an upper bound on
the number of Galois n-types over any finite n.

Exercise 7.19 If Y is a 2-transitive linear ordering and then for any τ
and Φ is proper for linear orders, EM(Y, Φ) has |τ | Galois types.

Exercise 7.20 For any reasonable logic L (i.e. a logic such that truth is
preserved under isomorphism) and any model M the number of Galois types
over the empty set in M is at most the number of L-types over the empty
set in M .

Now we can make our first application of the omitting types theorem.

Corollary 7.21 1. If an Lω1,ω(τ)-sentence ψ has arbitrarily large mod-
els then in every infinite cardinality ψ has a model which realizes only
countably many Lω1,ω(τ)-types over the empty set.

2. Thus, if ψ is categorical in some cardinal, ψ is implied by a consistent
complete sentence ψ′.
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Proof. By Theorem 7.6, we can extend τ to τ ′ and choose a first order
theory T and a countable set of types Γ such mod(ψ) = PCτ (T, Γ). Since
ψ has arbitrarily large models we can apply Theorem 12.1 to find τ ′′-
indiscernibles for a Skolemization of T in an extended language τ ′′. Now
take an Ehrenfeucht-Mostowski τ ′′-model M for the Skolemization of T
over a set of indiscernibles ordered by a 2-transitive dense linear order.
Then for every n, M has only countably many orbits of n-tuples and so
realizes only countably many types in any logic where truth is preserved by
automorphism – in particular in Lω1,ω. So the τ -reduct of M realizes only
countably many Lω1,ω(τ)-types. If ψ is κ-categorical, let ψ′ be the Scott
sentence of this Ehrenfeucht-Mostowski model with cardinality κ. ¤7.21

The countability of the language is crucial for this result.

7.3 Few models in small cardinals

For the second case, I(ℵ1, ψ) < 2ℵ1 , we must quote some hard results. In
particular, we rely on the undefinability of well-order in Lω1,ω(Q), which
we treated in Chapter 6

Theorem 7.22 If the τ Lω1,ω(Q)-sentence ψ has a model of cardinality
ℵ1 which is L∗-small for every countable τ -fragment L∗ of τ -small model
of cardinality ℵ1.

Proof. Add to τ a binary relation <, interpreted as a linear order of M
with order type ω1. Using that M realizes only countably many types in any
τ -fragment, write Lω1,ω(Q)(τ) as a continuous increasing chain of fragments
Lα such that each type in Lα realized in M is a formula in Lα+1. Extend
the similarity type to τ ′′ by adding new 2n + 1-ary predicates En(x,y, z)
and n+1-ary functions fn. Let M satisfy En(α, a,b) if and only if a and b
realize the same Lα-type and let fn map Mn+1 into the initial ω elements
of the order, so that En(α, a,b) implies fn(α, a) = fn(α,b). Note:

1. En(β,y, z) refines En(α,y, z) if β > α;

2. En(0, a,b) implies a and b satisfy the same quantifier free τ -formulas;

3. If β > α and En(β, a,b), then for every c1 there exists c2 such that

(a) En+1(α, c1a, c2b) and

(b) if there are uncountably many c such that En+1(α, ca, c1a) then
there are uncountably many c such that En+1(α, cb, c2b).

4. fn witnesses that for any a ∈ M each equivalence relation En(a,y, z)
has only countably many classes.
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All these assertions can be expressed by an Lω1,ω(Q)(τ ′′) sentence φ. Let L∗

be the smallest τ ′′-fragment containing φ ∧ ψ. Now add a unary predicate
symbol P and a sentence χ which asserts M is an end extension of P (M).
For every α < ω1 there is a model Mα of φ ∧ ψ ∧ χ with order type of
(P (M), <) greater than α. (Start with P as α and alternately take an L∗-
elementary submodel and close down under <. After ω steps we have the
P for Mα.) Now by Theorem 6.9 there is a structure N1 of cardinality
ℵ1 satisfying φ ∧ ψ ∧ χ such P (N1) is not well-founded. Fix an infinite
decreasing sequence d0 > d1 > . . . in N1. For each n, define E+

n (x,y) if for
some i, En(di,x,y). Now using i), ii) and iii) prove by induction on the
quantifier rank of φ that N |= E+

n (a,b) implies N |= φ(a) if and only if
N |= φ(b) for every Lω1,ω(Q)(τ)-formula φ. For each n, En(d0,x,y) refines
E+

n (x,y) and by iv) En(d0,x,y) has only countably many classes; so N is
small. ¤7.22

Now we show that sentences of Lω1,ω(Q) that have few models can be
extended to complete sentences. We rely on the following result of Keisler
[Theorem 45 of [16] for Lω1,ω and Corollary 5.10 of [15].

Theorem 7.23 For any Lω1,ω(Q)-sentence ψ and any fragment L∗ con-
taining ψ, if ψ has fewer than 2ℵ1 models of cardinality ℵ1 then for any
M |= ψ of cardinality ℵ1, M realizes only countably many L∗-types over
the empty set.

Theorem 7.24 If an Lω1,ω-sentence ψ has fewer than 2ℵ1 models of car-
dinality ℵ1 then there is a complete Lω1,ω-sentence ψ′ that implies ψ and
has a model of cardinality ℵ1.

Proof. By Theorem 7.23 every model of ψ of cardinality ℵ1 is L∗-small for
every countable fragment L∗. By Theorem 7.22 ψ has a model of cardinality
ℵ1 which is small. By Lemma 7.5, we finish. ¤7.24

So to study categoricity of Lω1,ω-sentence ψ, we have established the
following reduction. If ψ has arbitrarily large models, without loss of gen-
erality, ψ is complete. If ψ has few models of power ℵ1, we can study
a subclass of the models of ψ defined by a complete Lω1,ω-sentence ψ′.
We will in fact prove sufficiently strong results about ψ′ to deduce a nice
theorem for ψ. Note that since ψ′ is complete, the models of ψ′ form an
EC(T, Atomic)-class in an extended similarity type τ ′.

Now we see how to phrase this result for Lω1,ω(Q). By Theorem 7.23
and Theorem 7.22 we replace any Lω1,ω(Q)-sentence with few models in ℵ1

with a ψ as in following definition.

Definition 7.25 Let ψ be a small Lω1,ω(Q)-complete sentence with vo-
cabulary τ in the countable fragment L∗ of Lω1,ω(Q). Form τ ′ by adding
predicates for formulas as in Theorem 7.6 but also add for each formula
(Qx)φ(x,y) a predicate R(Qx)φ(x,y) and add the axiom

(∀x)(Qx)φ(x,y) ↔ R(Qx)φ(x,y).
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Let ψ′ be the conjunction of the τ ′ Lω1,ω(Q)-axioms encoding this expan-
sion. By T (ψ), we mean the first order τ ′ theory containing all first order
consequences of ψ′. Let K1 be the class of atomic models of ψ′.

Notation 7.26 1. Let ≤∗ be the relation on K1: M ≤∗ N if M ≺τ ′ N
and for each formula φ(x,y) and m ∈ M , if M |= ¬R(Qx)φ(x,m) then
Rφ(x,m) has the same solutions in M and N .

2. Let ≤∗∗ be the relation on K1: M ≤∗ N if M ≺L′ N and for each
formula φ(x,y) and m ∈ M , if M |= ¬R(Qx)φ(x,m) if and only if
Rφ(x,m) has the same solutions in M and N .

It is easy to check that (K1,≤∗) is an AEC. but (K1,≤∗∗) is not an
AEC. It can easily happen that each of a family of models Mi ≤∗∗ M but⋃

i Mi 6≤∗∗ M . In the Chapter 8, we will explore some of the complications
this causes.
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8
A model in ℵ2

A first order sentence with an infinite model has models in all cardinalities;
in particular no sentence is categorical, has exactly one model. Sentences of
Lω1,ω may be categorical but only in cardinality ℵ0. In the early 70’s I asked
whether a sentence of L(Q) could have exactly one model of cardinality ℵ1.
Shelah [28] showed the answer was no with some additional set theoretic
hypotheses that he removed in [38]. In this chapter we introduce methods of
getting structural properties on the models in an AEC that have cardinality
λ by restricting the number of models of cardinality λ+. And from these
conditions on models of cardinality λ we show the existence of a model of
power λ+. Most strikingly, we present Shelah’s proof that if a sentence of
Lω1,ω(Q) is categorical in ℵ1 then it has a model of cardinality ℵ2.

The general setting here will be an AEC. We show first that if an AEC
is categorical in λ and λ+ and has no ‘maximal triple’ in power λ then it
has a model in power λ+. Then we show in Lω1,ω there are no maximal
triples in ℵ0; we finish by massaging the proof to handle Lω1,ω(Q).

Definition 8.1 We say (M, N) is a proper pair in λ, witnessed by a, if
we mean M ≺K N and a ∈ N −M and |M | = |N | = λ.

The fixed a is not used in the next Lemma but plays a central role in
the proof of Lemma 8.4.

Lemma 8.2 If an AEC K is categorical in λ and has a proper pair (M,N)
in λ then there is a model in K with cardinality λ+.
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Proof. Let M0 = M . For any α, given Mα, choose Mα+1 so that (M,N) ≈
(Mα, Mα+1) and take unions at limits. The union of Mα for α < λ+ is as
required. ¤S8.2

Definition 8.3 A maximal triple is a triple (M, a,N) such that a wit-
nesses that (M,N) is a proper pair and if (M ′, N ′) satisfies M ≺K M ′,
N ≺K N ′ and M ′ ≺K N ′ then a ∈ M ′.

Lemma 8.4 Suppose K is categorical in λ and λ+. If there are no maximal
triples of cardinality λ and there is a proper pair of cardinality λ then there
is a proper pair of cardinality λ+.

Proof. Let a witness that (M0, N0) is a proper pair in λ. Since there are
no maximal triples, we can construct proper pairs (Mi, Ni) such that Mi+1

is a proper ≺K extension of Mi and Ni+1 is a ≺K extension of Ni but no
Mi contains a; that is, the properness of each (Mi, Ni) is witnessed by the
same a. So (

⋃
i<λ+ Mi,

⋃
i<λ+ Ni) is the required proper pair. ¤8.4

So we have shown the required result if we can show there are no maximal
triples in λ. For this, we need two further definitions.

Definition 8.5 1. M ≺K N is a cut-pair if there exist models Ni for
i < ω such that M ≺K Ni+1 ≺K Ni ≺K N and

⋂
i<ω Ni = M .

2. A proper pair (M, N) has a first element if there is an a ∈ N such
that for every N ′ such that M is a proper ≺K -submodel of N ′ and
N ′ ≺K N , a ∈ N ′ −M .

Note that if (M, a,N) is a maximal triple then (M, N) has a first element
(though not conversely).

Example 8.6 Let (K,≺K ) be the collection of dense linear orders with
elementary submodel. (Q, <) be the rational order.

1. ((−∞, 1), [1,∞)) has a first element but (−∞, 1), 1, [1,∞) is not a
mazimal triple.

2. (−∞,
√

2)(
√

2,∞) is a cut-pair.

We give the idea of the following proof; the details are clear in both [38]
and [9].

Lemma 8.7 Suppose K is λ-categorical. If K has a cut-pair in cardinality
λ and it has a pair with first element in λ, then I(λ+,K) = 2λ+

.

Proof. Let (M,N) be a cut-pair. For S a stationary subset of λ+, define
MS

i for i < λ+ so that (Mi,Mi+1) is isomorphic to (M,N) if i is 0 or a
successor ordinal. But if i is a limit ordinal, let (Mi,Mi+1) be a cut-pair
if i ∈ S and for some a, let (Mi, a, Mi+1) have a first element a if i 6∈ S.
Then, let MS =

⋃
i<λ+ MS

i . Now, if S1 − S2 is stationary, MS1 6≈ MS2 .
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If f were an isomorphism between them by intersecting S1 − S2 with the
cub of i such that f maps MS1

i to MS2
i , we find a δ such (MS1

δ ,MS1
δ+1) is a

cut pair and (MS2
δ , aδ,M

S2
δ+1) has a first element. But then f cannot be an

isomorphism from MS2
δ+1 onto MS2

δ+1 since there is no place for aδ to go.¤8.7

Now we need the following result, which depends heavily on our restrict-
ing λ to be ℵ0 and also requiring the AEC to be a PCΓ(ℵ0,ℵ0) class. Some
extensions to other cardinalities are mentioned in [38].

Lemma 8.8 If K is a ℵ0-categorical PCΓ(ℵ0,ℵ0) class which is also an
AEC and that has a model of power ℵ1, then there is a cut pair in ℵ0.

Proof. Recall that K is the class of τ -reducts of models of a first order
theory T , which omit a countable set Γ of types. Let M ∈ K be a model
with universe ℵ1; write M as

⋃
i<ℵ1

Mi. For simplicity, assume the universe
of M0 is ℵ0. Expand M to a τ∗-structure M∗ by adding the order ℵ1 and
a binary function g such that g(i, x) is a τ -isomorphism from M0 to Mi.
Note that a unary predicate P naming M0 and a binary relation R(x, y)
such that R(a, i) if and only a ∈ Mi are easily definable from g. Moreover,
for each i, {x : R(x, i)} is closed under the functions of τ∗.

Let ψ be a sentence in Lω1,ω(τ∗) describing this situation. By Theo-
rem 6.7 (Theorem 12 of [16]), there is a model N∗ of ψ with cardinality ℵ0

in which < is not well-founded. For any b ∈ N∗, let

Nb = {x ∈ N∗ : R(x, b)}.

Let ai for i < ω be a properly descending chain. Then if Ni = Nai , which
has universe {x ∈ N∗ : R(x, ai)},

Ni ¹ τ ≺K N∗ ¹ τ

and because of g, each Ni is τ -isomorphic to P (N∗). Let I be the set of
b ∈ N∗ such that for some i, b < ai. Then

NI =
⋃

b∈I

Nb ¹ τ ≺K N∗ ¹ τ

by the union axiom, Definition 5.1 A3.3. Our required cut-pair is (NI , N0).
¤8.8

Theorem 8.9 If K is a ℵ0-categorical PCΓ(ℵ0,ℵ0) class which is also an
AEC and with a unique model of power ℵ1, then there is a model of power
ℵ2.

Proof. By Lemma 8.8, there is a cut-pair in ℵ0. Since ψ is ℵ1-categorical,
Lemma 8.7 implies there is no pair with first element and hence no maximal
triple in ℵ0. So by Lemma 8.4 there is a proper pair in ℵ1 and then by
Lemma 8.2, there is a model of power ℵ2. ¤8.9
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Corollary 8.10 An ℵ1-categorical sentence ψ in Lω1,ω has a model of
power ℵ2.

Proof. By Theorem 7.24, we may assume ψ has the form of Theorem 8.9.
¤8.10

We want to extend Corollary 8.10 from Lω1,ω to Lω1,ω(Q). The difficulty
is to find an appropriate AEC. By the arguments of Chapter 7, we can
find an Lω1,ω(Q)-complete sentence ψ′ which is satisfied by the model of
cardinality ℵ1.

Recall the associated classes (K1,≤∗) and (K1,≤∗∗) from Chapter 7.
Note that K1 may have 2ℵ1 models of cardinality ℵ1. So we will have to
work with (K1,≤∗∗) and we have to redo some of the previous arguments.
The crucial difficulty is that (K1,≤∗∗) does not satisfy Definition 5.1 A3.3

We need to check a variant on Lemma 8.8.

Lemma 8.11 (K1,≤∗∗) has a cut pair in ℵ0.

Proof. The argument is identical to Lemma 8.8 except for one key point.
The penultimate sentence of the proof read: Then NI =

⋃
b∈I Nb ¹ τ ≺K

N∗ ¹ τ by the union axiom Definition 5.1 A3.3. This is precisely the union
axiom that fails for ≤∗∗. But in this situation, for any i < ω we have
NI ≤∗ Ni+1 ≤∗∗ Ni so NI ≤∗∗ Ni, which is exactly what we need. ¤8.11

Corollary 8.12 An ℵ1-categorical sentence ψ in Lω1,ω(Q) has a model of
power ℵ2.

Proof. Since Lemma 8.2 uses only A3.1 of Definition 5.1, which holds of
(K1,≤∗∗), it suffices to show there is a (K1,≤∗∗) proper pair of cardinality
ℵ1 that are standard models of ψ. By Lemma 8.11, there is a (K1,≤∗∗)
cut-pair in ℵ0. Again, Lemma 8.7 does not depend on A3.3. So applying it,
we get 2ℵ1 non-isomorphic models of K1 and since we took ≤∗∗-extensions
ℵ1-times, each is actually a standard model of ψ. But this contradicts
the categoricity of ψ so there must no maximal triple in (K1,≤∗∗). By
Lemma 8.4 (which again does not depend on A3.3) we have a standard
(K1,≤∗∗) proper pair of cardinality ℵ1 and we finish. ¤8.12
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9
Galois types and Saturation

We work in this section under the following strong assumption.

Assumption 9.1 K is an abstract elementary class.

1. K has arbitrarily large models.

2. K satisfies the amalgamation property and the joint embedding prop-
erty.

3. The Lowenheim-number of K, LS(K), is ℵ0.

next paragraph repeats earlier definition in aec chpa.

We say K has the amalgamation property if M ≤ N1 and M ≤ N2 ∈ K
with all three in K implies there is a common strong extension N3 com-
pleting the diagram. Joint embedding means any two members of K have a
common strong extension. Crucially, we amalgamate only over members of
K; this distinguishes this context from the context of homogeneous struc-
tures.

In this section we take advantage of joint embedding and amalgamation
to find a monster model. We then define types in terms of orbits of stabi-
lizers of submodels. This allows an identification of ‘model-homogeneous’
with ‘saturated’. That is, we give an abstract account of Morley-Vaught
[26].
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Definition 9.2 M is µ-model homogenous if for every N ≺K M and
every N ′ ∈ K with |N ′| < µ and N ≺K N ′ there is a K-embedding of N ′

into M over N .

To emphasize, this differs from the homogeneous context because the N
must be in K. It is easy to show:

Lemma 9.3 If M1 and M2 are µ-model homogeneous of cardinality µ >
LS(K) then M1 ≈ M2.

Proof. If M1 and M2 have a common submodel N of cardinality < µ,
this is an easy back and forth. Now suppose N1, (N2) is a small model of
M1, (M2) respectively. By the joint embedding property there is a small
common extension N of N1, N2 and by model homogeneity N is embedded
in both M1 and M2. ¤9.3

Note that in the absence of joint embedding to get uniqueness, we would
(as in [38]) have to add to the definition of ‘M is model homogeneous’ that
all models of cardinality < µ are embedded in M .

Exercise 9.4 Suppose M is µ-model homogeneous with cardinality µ,
N0, N1, N2 ∈ K with N0 ≺ N1, N2 ≺ M , and f is isomorphism between
N1 and N2 over N0. Then f extends to an automorphism of M .

Theorem 9.5 If µ∗<µ∗ = µ∗ and µ∗ ≥ 2LS(K) then there is a model M
of cardinality µ∗ which is model homogeneous.

We call the model constructed in Theorem 9.5, the monster model. From
now on all, structures considered are substructures of M with cardinality
< µ∗. The standard arguments for the use of a monster model in first order
model theory ([12, 5] apply here.

Definition 9.6 Let M ∈ K, M ≺K M and a ∈M. The Galois type of a
over M (∈ M) is the orbit of a under the automorphisms of M which fix
M .

We freely use the phrase, ‘Galois type of a over M ’, dropping the (∈M)
since M is fixed. Note that a priori this notion depends on the embedding
of Ma into an N ∈ K and the embedding of N into M. Since we have
assumed amalgamation, our usage is justified as long as the base is an
M ∈ K. In more general situations, the Galois type is an equivalence
class of an equivalence relation on triples (M, a, N). This is an equivalence
relation on the class of M that are amalgamations for extensions in the
same cardinality. (See [40, 41].) Since we have amalgamation and have
fixed M, we don’t need the extra notation. The following definition and
exercise show the connection of the situation as described here with the
more complicated description elsewhere. They are needed only to link with
the literature.
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Definition 9.7 For M ≺K N1 ∈ K, M ≺K N2 ∈ K and a ∈ N1 −M ,
b ∈ N2 −M , write (M, a, N1) ∼ (M, b, N2) if there exist strong embeddings
f1, f2 of N1, N2 into some N∗ which agree on M and with f1(a) = f2(b).

Exercise 9.8 If K has amalgamation, ∼ is an equivalence relation.

Exercise 9.9 Suppose K has amalgamation and joint embedding. Show
(M, a, N1) ∼ (M, b, N2) if and only if there are embeddings g1 and g2 of
N1, N2 into M that agree on M and such that g1(a) and g2(b) have the
same Galois type over g1(M) in M.

Definition 9.10 The set of Galois types over M is denoted ga− S(M).

We say a Galois type p over M is realized in N with M ≺K N ≺K M
if p ∩N 6= ∅.
Definition 9.11 The model M is µ-Galois saturated if for every N ≺K
M with |N | < µ and every Galois type p over N , p is realized in M .

Again, a priori this notion depend on the embedding of M into M; but
with amalgamation it is well-defined.

The following model-homogeneity=saturativity theorem was announced
with an incomplete proof in [39]. Full proofs are given in Theorem 6.7 of
[9] and .26 of [36]. Here, we give a simpler argument making full use of
the amalgamation hypothesis. In Chapter ??, we discuss what can be done
with weaker amalgamation hypotheses.

Theorem 9.12 For λ > LS(K), The model M is λ-Galois saturated if
and only if it is λ-model homogeneous.

Proof. It is obvious that λ-model homogeneous implies λ-Galois satu-
rated. Let M ≺K M be λ-saturated. We want to show M is λ-model
homogeneous. So fix M0 ≺K M and N with M ≺K N ≺K M. Say,
|N | = µ < λ. We must construct an embedding of N into M . Enumerate
N −M as 〈ai : i < µ〉. We will define fi for i < µ an increasing continuous
sequence of maps with domain Ni and range Mi so that M0 ≺K Ni ≺K M,
M0 ≺K Mi ≺K M and ai ∈ Ni+1. The restriction of

⋃
i<µ fi to N is re-

quired embedding. Let N0 = M0 and f0 the identity. Suppose fi has been
defined. Choose the least j such that aj ∈ N−Ni. By the model homogene-
ity ofM, fi extends to an automorphism f̂i ofM. Using the saturation, let
bj ∈ M realize the Galois type of f̂i(aj) over Mi. So there is an α ∈ autM
which fixes Mi and takes bj to f̂i(aj). Choose Mi+1 ≺K M with cardi-
nality µ and containing Mibj . Now f̂−1

i ◦ α maps Mi to Ni and bj to aj .
Let Ni+1 = f̂−1

i ◦ α(Mi+1) and define fi+1 as the restriction of α−1 ◦ f̂i to
Ni+1. Then fi+1 is as required. ¤9.12

In the remainder of this section we discuss some important ways in which
Galois types behave differently from ‘syntactic types’.
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Note that if M ≺K N ≺K M, then p ∈ ga−S(N) extends p′ ∈ ga−S(M)
if for some (any) a realizing p and some (any) b realizing p′ there is an
automorphism α fixing M and taking a to b.

Lemma 9.13 If M =
⋃

i<ω Mi in an increasing chain of members of K
and {pi : i < ω} satisfies pi+1 ¹ Mi = pi, there is a pω ∈ ga − S(M) with
pω ¹ Mi = pi for each i.

Proof. Let ai realize pi. By hypothesis, for each i < ω, there exists fi

which fixes Mi−1 and maps ai to ai−1. Let gi be the composition f0 ◦ f1 ◦
. . . fi. Then gi maps ai to a0, fixes M0 and gi ¹ Mi−1 = gi−1 ¹ Mi−1. Let M ′

i

denote gi(Mi) and M ′ their union. Then
⋃

i<ω gi is an isomorphism between
M and M ′. So by model-homogeneity there exists an automorphism h of
M with h ¹ Mi = gi ¹ Mi for each i. Now g−1

i ◦ h fixes Mi and maps aω to
ai for each i. This completes the proof. ¤9.13

Now suppose we wanted to prove Lemma 9.13 for chains of length δ > ω.
The difficulty can be seen at stage ω. In addition to the assumptions of
Lemma 9.13, we are given {ai : i ≤ ω} and fω,i which fixes Mi and maps
aω to ai. We can construct gi as in the original proof. The difficulty is to
find gω which extends all the gi and maps aω to a0. In the argument for
Lemma 9.13, we found a map h and an element (which we will now call
a′ω such that h takes a′ω to a0 while h extends all the gi. We would be
done if aω and a′ω realized the same galois type over M = Mω. In fact,
aω and a′ω realized the same galois type over each Mi. So the following
locality condition (for chains of length ω) would suffice for this special case.
Moreover, by a further induction locality would give Lemma 9.13 for chains
of arbitrary length. Unfortunately, locality probably does not hold for all
AEC with amalgamation.

Definition 9.14 K has κ-local galois types if for every continuous increas-
ing chain M =

⋃
i<κ Mi of members of K and for any p, q ∈ ga− S(M): if

p ¹ Mi = q ¹ Mi for every i then p = q.

We have sketched the proof of:

Lemma 9.15 Suppose K has κ-local Galois types. If M =
⋃

i<κ Mi in an
increasing chain of members of K and {pi : i < κ} satisfies pi+1 ¹ Mi = pi,
there is a pκ ∈ ga− S(M) with pκ ¹ Mi = pi for each i.

Locality provides a key distinction between the general AEC case and
homogenous structures. In homogeneous structures, types are syntactic ob-
jects and locality is trivial. Thus, as pointed out by Shelah, Hyttinen, and
Buechler-Lessmann, Lemma 9.15 applies in the homogeneous context.
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10
Homogeneity and Saturation

Assumption 10.1 K is an abstract elementary class.

In Chapter 9, we assumed the amalgamation property and developed
the notion of Galois type. Here, we show these notions make sense without
any amalgamation hypotheses. Of course the notions defined here yield the
previous concepts when amalgamation holds.

The goal is to derive properties on embedding models from the realiza-
tion of Galois types. We want to show that if M1 realizes ‘enough’ types
over M then any small extension N of M can be embedded into M1. The
idea is first published as ‘saturation = model-homogeneity’ in 3.10 of [38]
(Theorem 10.8 below), where the proof is incomplete. Successive exposi-
tions in [36, 9], and by Baldwin led to this version, where the key lemma
was isolated by Kolesnikov. In contrast to various of the expositions and
like Shelah, we make no amalgamation hypothesis.

Whether we really gain anything by not assuming amalgamation is un-
clear. I know of no example where either λ-saturated or λ-model homoge-
neous structures are proved to exist without using amalgamation, at least
in λ.

The key idea of the construction is that to embed N into M1; we con-
struct a M2 ≺K M1 and a K-isomorphism f from M2 onto an N2 ≺K N3

where N ≺K N3. Then the coherence axiom tells us restricting f−1 to N ,
gives the required embedding. We isolate the induction step of the con-
struction in the following lemma. We will apply the lemma in two settings.
In one case M has the same cardinality as M and is presented with a fil-
tration Mi. Then M̂ will be one of the Mi. In the second, M is a larger
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saturated model and M̂ will be chosen as a small model witnessing the
realization of a type.

We work in the most general context with no amalgamation hypothesis.
We state several definitions to indicate the exact context we are working
in. The most appropriate background in Shelah in [36], not [32]. We use
our own notation but the relation to his should be clear.

Definition 10.2 1. For M ≺K N1 ∈ K, M ≺K N2 ∈ K and a ∈
N1 −M , b ∈ N2 −M , write (M,a, N1) ∼At (M, b,N2) if there exist
strong embeddings f1, f2 of N1, N2 into some N∗ which agree on M
and with f1(a) = f2(b).

2. Let ∼ be the transitive closure of ∼AT (as a binary relation on
triples).

3. We say the Galois type a over M in N1 is the same as the Galois
type a over M in N2 if (M,a, N1) ∼ (M, b, N2)

Exercise 10.3 If K has amalgamation, ∼AT is an equivalence relation
and ∼=∼AT .

But we do not assume amalgamation.

Notation 10.4 The set of Galois types over M is denoted ga− S(M).

Definition 10.5 1. We say the Galois type of a over M in N1 is
strongly realized in N with M ≺K N if for some b ∈ N ,
(M,a, N1) ∼AT (M, b,N).

2. We say the Galois type of a over M in N1 is realized in N with
M ≺K N if for some b ∈ N , (M,a, N1) ∼ (M, b, N).

Now we need a crucial form of the definition of saturated from [36]

Definition 10.6 The model M is µ-Galois saturated if for every N ≺K
M with |N | < µ and every Galois type p over N , p is strongly realized in
M .

Under amalgamation we could define saturation using realization and
we would have an equivalent notion. Without amalgamation, the notion
we have selected is obviously more restricted. For the moment we rely on
the assertion in Definition 22 of [36] that in all ‘interesting situations’ we
can use the strong form of saturation.

We use in this construction without further comment two basic obser-
vations. If f is a K-isomorphism from M onto N and N ≺K N1 there
is an M1 with M ≺K M1 and an isomorphism f1 (extending f) from
M1 onto N1. (The dual holds with extensions of M .) Secondly, whenever
f1 ◦f2 : N 7→ M and g1 ◦g2 : N 7→ M are maps in a commutative diagram,
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there is no loss of generality in assuming N ≺K M and f1 ◦ f2 is the
identity.

Of course, under amalgamation of models of size |M |, we can delete the
strongly in following hypothesis.

Lemma 10.7 Suppose M ≺K M and M strongly realizes all Galois-types
over M . Let f : M 7→ N be a K-isomorphism and Ñ a K-extension of
N . For any a ∈ Ñ − N there is a b ∈ M such that for any M̂ with
Mb ⊆ M̂ ≺K M and |M | = |M̂ | = λ, there is an N∗ with N ≺K N∗

and an isomorphism f̂ extending f and mapping M̂ onto N̂ ≺K N∗ with
f̂(b) = a.

Proof. Choose M̃ with M ≺K M̃ and extend f to an isomorphism
f̃ of M̃ and Ñ . Let ã denote f̃−1(a). Choose b ∈ M to strongly realize
the Galois type of ã over M in M̃ . Fix any M̂ with Mb ⊆ M̂ ≺K M

and |M | = |M̂ | = λ. By the definition of strongly realize, we can choose
an extension M∗ of M̃ and h : M̂ 7→ M∗ with h(b) = ã. Lift f̃ to an
isomorphism f∗ from M∗ to an extension N∗ of Ñ . Then f̂ = (f∗ ◦h) ¹ M̂

and N̂ is the image of f̂ . ¤10.7

A key point in both of the following arguments is that while the Ni

eventually exhaust N , they are not required to be submodels (or even
subsets) of N .

Here is the first application.

Theorem 10.8 Assume λ > LS(K). A model M2 is λ-Galois saturated if
and only if it is λ-model homogeneous.

Proof. It is obvious that λ-model homogeneous implies λ-Galois satu-
rated. Let M2 be λ-saturated. We want to show M2 is λ-model homoge-
neous. So fix M0 ≺K M2 and N with M0 ≺K N . Say, |N | = µ < λ. We
construct M1 as a union of strong submodels Mi of M2. At the same time
we construct N1 as the union of N ′

i which are strong extensions of N and
fi mapping Mi onto Ni. Enumerate N −M0 as 〈ai : i < µ〉. Let N0 = M0,
N ′

0 = N and f0 be the identity. At stage i, fi, Ni, Mi, N ′
i , are defined; we

will construct N ′
i+1, fi+1, Ni+1, Mi+1. Apply Lemma 10.7 with aj as a for

the least j with aj 6∈ N ′
i ; take Mi for M ; Mi+1 is any submodel of M2 with

cardinality µ that witnesses the Galois type of b over Mi in M2 and plays
the role M̂ in the lemma; N ′

i is Ñ and Ni is N . The role of M is taken
by M2 at all stages of the induction. We obtain fi+1 as f̂ , Ni+1 as N̂ and
N ′

i+1 as N∗. Finally f is the union of the fi and N1 is the union of the N ′
i .

¤10.8

Just how general is Theorem 10.8? It asserts the equivalence of ‘M is λ-
model homogeneous’ with ‘M is λ-saturated’ and we claim to have proved
this without assuming amalgamation. But the existence of either kind of
model is near to implying amalgamation on K<λ. But it is only close. Let
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ψ be a sentence of Lω1,ω which has saturated models of all cardinalities and
φ be a sentence of Lω1,ω which does not have the amalgamation property
over models. Now let K be the AEC defined by ψ∨φ (where we insist that
on each model either the τ(ψ)-relations or the τ(φ)-relations are trivial but
not both). Then K has λ-model homogeneous models of every cardinality
(which are saturated) but does not have either the joint embedding or the
amalgamation property (or any restriction thereof). However, with some
mild restrictions we see the intuition is correct. First an easy back and forth
gives us:

Lemma 10.9 If K has the joint embedding property and λ > LS(K) then
any two λ-model homogeneous models M1, M2 of power λ are isomorphic.

Proof. It suffices to find a common strong elementary submodel of M1

and M2 with cardinality < λ but this is guaranteed by joint embedding
and λ > LS(K). ¤10.9

Definition 10.10 For any AEC K, and M ∈ K let KM be the AEC
consisting of all direct limits of strong substructures of M .

Lemma 10.11 Suppose M is a λ-model homogeneous member of K.

1. KM
<λ has the amalgamation property.

2. If K has the joint embedding property K<λ has the amalgamation
property.

Proof. The first statement is immediate and the second follows since then
by Lemma 10.9 we have KM

<λ = K<λ. ¤10.11

Now by Lemma 10.11 and Theorem 10.8 we have:

Corollary 10.12 If K has a λ-saturated model and has the joint embed-
ding property then K<λ has the amalgamation property.

The corollary, which is Remark 30 of [36], confirms formally the intuition
that under mild hypotheses we need amalgamation on K<λ to get satu-
rated models of cardinality λ. But we rely on the basic equivalence, proved
without amalgamation to establish this result.

Now we have a second application of the Lemma 10.7. This requires an
amalgamation hypothesis. Theorem 10.14 is asserted without proof in 1.15
of [33]; another exposition of the argument is in [8].

Definition 10.13 M2 is σ-universal over M1 if M1 ≺K M2 and whenever
M1 ≺K M ′

2, with |M ′
2| ≺K σ, there is a (partial isomorphism) fixing M1

and taking M ′
2 into M2.

This is Definition 1.12 1) from [33]. Note that it does not require that
all smaller models K imbed into M2.
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Theorem 10.14 If K is λ-Galois stable and Kλ has the amalgamation
property, then for every M ∈ Kλ there is an M1 with cardinality λ that is
λ-universal over M .

Proof. Construct M1 as a continuous union for i < λ of Mi with M0 = M ,
and each Mi+1 realizes all Galois types over Mi. (The existence of the
Mi+1 is guaranteed by the amalgamation hypothesis.) Now fix any strong
extension N of M . We will construct a K-isomorphism f from M1 into an
extension N1 of N with N ⊂ N ≺K N1, where N denotes the range of f .
By the coherence axiom f−1 ¹ N is the required map.

To construct f , enumerate N − M as 〈ai : i < λ〉. We construct a
continuous increasing sequence of maps fi. Let f0 = 1M . Suppose we have
defined fi, Ni and N ′

i with fi taking Mi onto Ni ≺K N ′
i . Now apply

Lemma 10.7 with aj as a for the least j with aj 6∈ N ′
i ; take Mi for M ;

Mi+1 plays the role of both M and M̂ in the lemma; N ′
i is Ñ and Ni is N .

We obtain fi+1 as f̂ , Ni+1 as N̂ and N ′
i+1 as N∗. Finally f is the union of

the fi and N1 is the union of the N ′
i . ¤10.14

The formulation of these results and arguments followed extensive dis-
cussions with Rami Grossberg, and Monica Van Dieren. Alexei Kolesnikov
singled out Lemma 10.7.
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11
Galois Stability

In this section we show that a λ-categorical AEC is µ-stable for µ above the
Löwenheim number and below λ. For convenience, we continue to assume
the amalgamation property and thus the monster model. The key idea is
that for a linear order I and model EM(I, Φ) automorphisms of I induce
automorphisms of EM(I, Φ). And, automorphisms of EM(I, Φ) preserve
types in any reasonable logic; in particular, automorphisms of EM(I,Φ)
preserve Galois types. Note that a model N is (defined to be) stable if few
types are realized in N . So if N is a brimful model (Definition 11.2) then
the model N is σ-stable for every σ < |N |.

Since we deal with reducts, we will consider several structures with the
same universe; it is crucial to keep the vocabulary of the structure in mind.
The AEC under consideration has vocabulary τ ; it is presented as reducts
of models of theory T ′ (which omit certain types) in a vocabulary τ ′. In
addition, we have the class of linear orderings (LO) in the background.

We really have three AEC’s: (LO,⊂), K′ which is Mod(T ′) with sub-
model as τ ′-closed subset, and (K,≺K ). We are describing the properties
of the EM-functor between (LO,⊂) and K′ or K. K ′ is only a tool that we
are singling out to see the steps in the argument. The following definitions
hold for any of the three classes and I write ≤ for the notion of substruc-
ture. In this section of the paper I am careful to use ≤ when discussing all
three cases versus ≺K for the AEC.

Definition 11.1 M2 is σ-universal over M1 in N if M1 ≤ M2 ≤ N and
whenever M1 ≤ M ′

2 ≤ N , with |M1| ≤ |M ′
2| ≤ σ, there is a ≤-embedding

fixing M1 and taking M ′
2 into M2.
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I introduce one term for shorthand. It is related to Shelah’s notion of
brimmed in [33] but here the brimful model is bigger than the models it is
universal over while brimmed models may have the same cardinality.

Definition 11.2 M is brimful if for every σ < |M |, and every M1 ≤ M
with |M1| = σ, there is an M2 ≤ M with cardinality σ that is σ-universal
over M1 in M .

The next notion just makes it easier to write the proof of the following
Lemma.

Notation 11.3 Let I ⊂ J be linear orders. We say a and b in J realize
the same cut over I and write a ∼I b if for every j ∈ J , a < j if and only
if b < j.

Claim 11.4 (Lemma 3.7 of [37]) The lexicographic linear order on I =
λ<ω is brimful.

Proof. Let J ⊂ I have cardinality θ < λ. Since we can increase J without
harm, we can assume J = A<ω for some A ⊂ λ. Note that σ ∼J τ if and
only if for the least n such that σ ¹ n = τ ¹ n ∈ J , σ(n) ∼A τ(n). Thus
there are only θ cuts over J realized in I. For each cut Cα, α < θ, we choose
a representative σα ∈ I − J of length n such that σα ¹ n− 1 ∈ J , so a cut
has the form {σα τ̂ : τ ∈ λ<ω, α < θ}. We can assume any J∗ extending
J has the form J∗ = B<ω for some B ⊂ λ, say with otp(B) = γ. Thus,
the intersection of J∗ with a cut in J is isomorphic to a subset of γ<ω.
We finish by noting for any ordinal |γ| = θ, γ<ω can be embedded in θ<ω.
Thus, the required θ-universal set over J is J ∪ {σα τ̂ : τ ∈ θ<ω, α < θ}.

Qing Zhang has provided the following elegant argument for the last
claim. First show by induction on γ there is a map g embedding γ in θ<ω.
(E.g. if γ = limi<θ γi, and gi maps γi into θ<ω, let for β < γ, g(β) = î gi(β)
where γi ≤ β < γi+1.) Then let h map γ<ω into θ<ω by, for σ ∈ γ<ω of
length n, setting h(σ) = 〈g(σ(0)), . . . , g(σ(n− 1))〉. ¤11.4

The argument for Claim 11.4 yields:

Corollary 11.5 Suppose µ < λ are cardinals. Then for any X ⊂ µ<ω and
any Y withX ⊆ Y ⊂ λ<ω and |X| = |Y | < µ, there is an order embedding
of Y into µ<ω over X.

Exercise 11.6 For an ordinal γ, let γω∗ denote the functions from ω to γ
with only finitely many non-zero values. Show γω∗ is a dense linear order
and so is not isomorphic to γ<ω. Vary the proof above to show γω∗ is
brimful.

Since every τ ′-substructure N of EM(I,Φ) is contained in a substructure
EM(I0,Φ) for some subset I0 of I with |I0| = |N |, we have immediately:

Claim 11.7 If I is brimful as a linear order, EM(I,Φ) is brimful as an
τ ′-structure.
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Recall, Morley’s omitting types theorem.

repeating earlier statement

Lemma 11.8 If (X, <) is a sufficiently long linearly ordered subset of a
τ -structure M , for any τ ′ extending τ (the length needed for X depends
on |τ ′|) there is a countable set Y of τ ′-indiscernibles (and hence one of
arbitrary order type) such that Dτ (Y ) ⊆ Dτ (X). This implies that the only
(first order) τ -types realized in EM(X,Dτ ′(Y )) were realized in M .

Using this result, we can find Skolem models over sets of indiscernibles
in an AEC.

Theorem 11.9 If K is an abstract elementary class in the vocabulary τ ,
which is represented as a PCΓ class witnessed by τ ′, T ′, Γ that has arbitrar-
ily large models, there is a τ ′-diagram Φ such that for every linear order
(I, <) there is a τ ′-structure M = EM(I,Φ) such that:

1. M |= T ′.

2. The τ ′-structure M = EM(I, Φ) is the Skolem hull of I.

3. I is a set of τ ′-indiscernibles in M .

4. M ¹ τ is in K.

5. If I ′ ⊂ I then EMτ (I ′, Φ) ≺K EMτ (I, Φ).

Proof. The first four clauses are a direct application of Lemma 12.1, Mor-
ley’s theorem on omitting types. See also problem 7.2.5 of Chang-Keisler
[6]. It is automatic that EM(I ′, Φ) is an L′ substructure of EM(I, Φ). The
moreover clause of Theorem 5.5 allows us to extend this to EMτ (I ′,Φ) ≺K
EMτ (I,Φ). ¤11.9

Now using amalgamation and categoricity, we move to the AEC K. There
are some subtle uses here of the ‘coherence axiom’: M ⊆ N ≺K N1 and
M ≺K N1 implies M ≺K N .

Claim 11.10 If I is brimful as linear order, EMτ (I,Φ) is brimful as a
member of K.

Proof. Let M = EM(I,Φ); we must show M ¹ τ is brimful as a member
of K. Suppose M1 ≺K M ¹ τ with |M1| = σ < |M |. Then there is
N1 = EM(I ′, Φ) with |I ′| = σ and M1 ⊆ N1 ≤ M . By Lemma 11.9.5,
N1 ¹ τ ≺K M ¹ τ . So M1 ≺K N1 ¹ τ by the coherence axiom. Let M2 have
cardinality σ and M1 ≺K M2 ≺K M ¹ τ . Choose a τ ′-substructure N2 of
M with cardinality σ containing N1 and M2. Now, N2 can be embedded
by a map f into the σ-universal τ ′-structure N3 containing N1 which is
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guaranteed by Claim 11.7. But f(N2) ¹ τ ≺K N3 ¹ τ by the coherence
axiom so N3 ¹ τ is the required σ-universal extension of M1. ¤11.10

Definition 11.11 1. Let N ⊂M. N is λ-Galois-stable if for every M ⊂
N with cardinality λ, only λ Galois types over M are realized in N .

2. K is λ-Galois-stable if M is. That is autM(M) has only λ orbits for
every M ⊂M with cardinality λ.

Since we are usually working in an AEC, we will frequently abuse nota-
tion and write stable rather than Galois-stable.

Since each Galois type over M0 realized in M is represented by an M1

with M0 ≺K M1 ≺K M , M = EM(I, φ) brimful, and |M1| = |M0|,
Claim 11.10 implies immediately:

Claim 11.12 If K is λ-categorical, the model M with |M | = λ is σ-Galois
stable for every σ < λ.

Theorem 11.13 If K is categorical in λ, then K is σ-Galois-stable for
every σ < λ.

Proof. Suppose K is not σ-stable for some σ < λ. Then by Löwenheim-
Skolem, there is a model N of cardinality σ+ which is not σ-stable. Let
M be the σ-stable model with cardinality λ constructed in Claim 11.12.
Categoricity and joint embedding imply N can be embedded in M . The
resulting contradiction proves the result. ¤11.13

Remark 11.14 Again, the assumption that K has amalgamation isn’t
needed here; instead of using Löwenheim-Skolem from the monster, one
can use amalgamation on K<λ and get joint embedding by restricting to
the equivalence class of the categoricity model.

Corollary 11.15 Suppose K is categorical in λ and λ is regular. The
model of power λ is saturated and so model homogeneous.

Proof. Choose in Mi ≺K M using < λ-stability and Löwenheim-Skolem,
for i < λ so that each Mi has cardinality < λ and Mi+1 realizes all types
over Mi. By regularity, it is easy to check that Mλ is saturated. ¤11.15

The same argument gives saturated models in smaller regular cardinals;
more strongly we can demand that the saturated model be an Ehrenfreuht-
Mostowski model.

Corollary 11.16 Suppose K is an AEC with vocabulary τ that is cate-
gorical in λ and λ is regular. Then for every regular µ, LS(K) < µ < λ
there is a model Mµ = EMτ (Iµ, Φ) which is saturated. In particular, it is
µ-model homogeneous.
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Proof. For any ordered set J of cardinality λ, let N = EMτ (J, φ)
be the model of cardinality λ. We construct an alternating chain of K-
submodels of length µ. M0 ≺K M is arbitrary with cardinality µ. M2α+1

has cardinality µ and realizes all types over M2α (possible by Corol-
lary 11.15). M2α+2 has cardinality µ, M2α+1 ≺K M2α+2 and M2α+2 is
EMτ (Iα+1,Φ) where Iα ⊂ Iα+1 ⊂ J and all Iα have cardinality µ. Then
EMτ (Iµ,Φ) =

⋃
α<µ EMτ (Iα,Φ) is saturated by regularity. ¤11.16

Now using stability we can get a still stronger result, eliminating the
hypothesis that µ is regular. We show the proofs of both Corollary 11.16
and Corollary 11.17 since in the first case we constructed a saturated model
directly and in the second a model homogeneous structure.

Corollary 11.17 Suppose K is categorical in λ and λ is regular. Then
for every µ, LS(K) < µ < λ there is a model Mµ = EM(µ<ω, Φ) which is
µ-model homogeneous.

Proof. Represent the categoricity model as M∗ = EMτ (λ<ω, Φ). We
show Mµ = EMτ (µ<ω, Φ) is model homogenous. Suppose M1 ≺K Mµ ¹ τ
with |M1| = σ < |Mµ|. Then there is N1 = EMτ (I1, Φ) with |I1| = σ,
M1 ⊂ N1 and I1 ⊂ µ<ω. Let M2 have cardinality σ and M1 ≺K M2. By
amalgamation, choose N2 ∈ K which is an amalgam of N1 and M2 over
M1. By the λ-model homogeneity of M∗, there is an embedding of N2 into
M∗ over N1 say with image N ′

2. Then N ′
2 ⊂ EM(J,Φ) for some J with I1 ⊂

J ⊂ λ<ω and |J | = σ. Now by Corollary 11.5 and an argument like that in
Claim 11.10, there is an embedding of EMτ (J,Φ) into M = EMτ (µ<ω,Φ)
over N1, and a fortiori over M1 and we finish. ¤11.17

Exercise 11.18 Show Corollary 11.17 can be marginally strengthened by
dropping the hypothesis that λ is regular but requiring that µ be less than
the cofinality of λ.



58 11. Galois Stability



This is page 59
Printer: Opaque this

12
Omitting types and Downward
Categoricity

We begin by stating a general version of Morley’s omitting types theorem
and formalizing the phrase ‘sufficiently long’ used in the last chapter. Then
we deduce the analogous result for abstract elementary classes.

We include some results on downward categoricity that may eventually form
another chapter or disappear.

We quote without proof the combined form Morley’s omitting types the-
orem and his ‘two cardinal theorem for cardinals far apart. The exact for-
mulation is from VII.5.3 of [29].

Lemma 12.1 Suppose Γ is a set of τ -types, T a τ -theory, and P is a
one-place τ -predicate. Suppose M is a τ -structure such that

1. |M | ≥ i(2|τ|))+)

2. |M | ≥ i(2|τ|)+(|P (M)|)
For every µ ≥ |τ |, there is a model N of T such that

1. |N | = µ;

2. N omits Γ;

3. |P (N)| = |τ |.
Definition 12.2 1. Let µ(κ) be the Hanf number for omitting 2κ types

for a first order theory with vocabulary of size κ.
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2. We write µ(τ) for µ(|τ |).
We can restate the last result as follows.

Corollary 12.3 µ(κ) is i(2|τ|))+).

Now we prove ‘Morley’s method’ for Galois types.

Lemma 12.4 [II.1.5 of 394] Let K be an AEC in vocabulary of cardinality
κ. If M0 ≤ M and |M | ≥ µ(κ), we can find an EM-set Φ such that the
following hold.

1. The τ -reduct of the Skolem closure of the empty set is M0.

2. For every I, M0 ≤ EM(I, Φ).

3. If I is finite, EMτ (I, Φ) can be embedded in M .

4. EMτ (I, Φ) omits every galois type over N which is omitted in M .

Proof. Let τ1 be the Skolem language given by the presentation theorem
and consider M as the reduct of τ1 structure M1. Add constants for M0 to
form τ ′1. Now apply Lemma 12.1 to find an EM-diagram Φ (in τ ′1) with all
τ -types of finite subsets of the indiscernible sequence realized in M . Now
1) and 2) are immediate. 3) is easy (using clause 5) of Theorem 11.9 since
we chose Φ so all finite subsets of the indiscernible set (and so their Skolem
closures) are realized in M .

The omission of Galois types is more tricky. Consider both M and N =
EMτ (I, Φ) embedded inM. Let N1 denote the τ ′1-structure EM(I, Φ). We
need to show that if a ∈ N , p = ga − tp(a/M0) is realized in M . For
some e ∈ I, a is in the τ1-Skolem hull Ne of e. (Recall the notation from
the presentation theorem.) By 3) there is an embedding α of Ne into M1

over M0. α is also an isomorphism of Ne ¹ τ into M . Now, by the model
homogeneity, α extends to an automorphism ofM fixing M0 and α(a) ∈ M
realizes p. ¤12.4

Now we can rephrase this result as

Corollary 12.5 The Hanf number for omitting Galois types in any AEC
with a vocabulary of size κ is µ(κ).

This result has immediate applications in the direction of transferring
categoricity.

Theorem 12.6 Suppose M ∈ K omits a Galois type p over a submodel
M0 with |M | ≥ µ(|M0|). Then there is no regular cardinal λ ≥ |M | in
which K is categorical.

Proof. By Lemma 12.4, there is a model N ∈ K with cardinality λ which
omits p. But by Lemma 11.15, the unique model of power λ is saturated.
¤12.6
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Key point for application: If |P (M)| < i(2|τ|)+ then i(2|τ|)+(|P (M)|) =
i(2|τ|)+ .

(If κ < iµ, there is an α < µ with iα ≥ κ. So for every β < µ,

iβ(κ) ≤ iα+β ≤ iµ.

So
iµ(κ) = iµ.

In [32] Shelah asserts the following result:

Theorem 12.7 If K is categorical in a regular cardinal λ and λ >
µ(µ(|τ |)) then K is categorical in every θ with µ(|τ |) ≤ θ ≤ λ.

Here is a sketch of the argument. We have shown that there are saturated
models of power θ for every θ < λ. The obstacle to deducing downward
categoricity is that Theorem 12.4 only allows us to transfer the omission of
types when the model omitting the type is much bigger than the domain of
the type. The first step in remedying this problem is to show that all types
are determined by ‘relatively small’ subtypes. More precisely, we need the
notion that Grossberg and Van Dieren [8] have called χ-tame and Shelah
[32] refers to has ‘having χ-character’. We add an extra parameter to be
careful.

Definition 12.8 We say K is (χ, µ)-tame if for any saturated N ∈ K
with |N | = µ < λ if p, q,∈ ga− S(N) and for every N0 ≤ N with |N0| ≤ χ,
p ¹ N0 = q ¹ N0 then q = p.

Shelah asserts the following in Sections II.1 and II.2.3 of the published
version of [32]. The published proof is incomplete; I haven’t yet seen the
corrections. But it seems to use only Ehrenfeucht-Mostowski type methods.

Theorem 12.9 Suppose K is λ-categorical for λ ≥ µ(τ) and λ is regular.
Then K is (χ, χ1)-tame for some χ < µ(τ) and any χ1 with χ < χ1 ≤ λ.

The naive argument would give χ = µ(τ) since one is omitting types.
But omitting in every cardinal below µ(τ) is as good as in µ(τ) so the
conclusion becomes for some χ with χ < µ(τ).
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13
Atomic AEC

In this brief section, we describe the setting of the rest of the book.
The following assertion is an exercise in Lecture 4.
Let ψ be a complete sentence in Lω1,ω in a countable language L. Then

there is a countable language L′ extending L and a first order L′-theory T
such that reduct is a 1-1 map from the atomic models of T onto the models
of ψ. So in particular, any complete sentence of Lω1,ω can be replaced (for
spectrum purposes) by considering the atomic models of a first order theory.

This section is indirectly based on [28, 30, 31], where most of the results
were originally proved. But our exposition owes a great deal to [20, 19, 17,
10].

Definition 13.1 A model M is atomic if every finite sequence in M real-
izes a principal type over the empty set.

Thus if T is ℵ0-categorical every model of T is atomic.

Notation 13.2 We say an AEC, (K,≺K ) is if K is the class of atomic
models of a first order theory and ≺K is elementary submodel.

Assumption 13.3 We work in this section entirely in the following con-
text. K is the class of atomic models of a complete first order theory T .
Note that with ≺K as ≺, elementary submodel, this is an abstract ele-
mentary class. Moreover, K is ℵ0-categorical and every member of K is
ℵ0-homogeneous. We write M for the monster model of T ; in interesting
cases M is not in K.
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Definition 13.4 Let A be an atomic set; Sat(A) is the collection of p ∈
S(A) such that if a ∈M realizes p, Aa is atomic.

If A is countable and p ∈ Sat(A) then p is realized in the unique count-
able M ∈ K. But this may fail for uncountable A; indeed unless K is
homogeneous, there will be some A and p ∈ Sat(A) which is not realized
in a model ([21]).

Definition 13.5 K is λ-stable if for every M of cardinality λ, |Sat(M)| =
λ.

To say K is ω-stable in this sense is strictly weaker than requiring
|Sat(A)| = ℵ0 for arbitrary countable A ([21]).

Example 13.6 Consider two structures (Q, <) and (Q, +, ·, <). If K1 is
class of atomic models of the theory of dense linear order without endpoints,
then K1 is not ω-stable; tp(

√
2;Q) ∈ Sat(Q). If K2 is class of atomic

models of the theory of the ordered field of rationals, then K2 is ω-stable;
tp(
√

2;Q) 6∈ Sat(Q).

Definition 13.7 We say B is atomic over A if for every b ∈ B, there is
a formula φ(x, a) such that φ(x,a) → ψ(x,a′) for every ψ(x,a′) such that
ψ(b, a′).

This formulation assumes we have the diagram of A. Since A is atomic,
we can further for any a′ ∈ A, if θ(w,y) generates tp(a′a/∅) then θ(w,y)∧
φ(x,a) → ψ(x,y).

The following result is a standard combination of generating formulas.

Exercise 13.8 If C is atomic over B and B is atomic over A then C is
atomic over A.

Definition 13.9 M is primary over A if there is a sequence M = A∪〈ei :
i < λ〉 and tp(ej/AE<j) is isolated for each j.

Definition 13.10 M ∈ K is prime over A if every elementary map from
A into N ∈ K extends to an elementary map from M into N .

Now it is an easy induction to show:

Exercise 13.11 If M is primary over A, then M is atomic over A and
prime over A.

Definition 13.12 M ∈ K is prime over A if every elementary map from
A into N ∈ K extends to an elementary map from M into N .
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14
The ω1-order property

In this chapter K is atomic.

Definition 14.1 The formula φ(x,y) has the κ-order property for K if
there exist 〈ai, bi : κ〉 such that

φ(ai,bj) if and only if i < j.

Theorem 14.2 If I(K,ℵ1) < 2ℵ1 , then no formula φ has the ℵ1-order
property for K.

proof to follow - 5.1-5.4 of [28]
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15
Independence in ω-stable Classes

We work in an atomic K which is ω-stable.
We want to define a notion of independence over X. In this section we will

describe the basic properties of this relation. As in Chapter II of [1], we can
use these as properties of an abstract dependence relation to demonstrate
other technical conditions.

We begin with defining an appropriate rank function.

Definition 15.1 Let N ∈ K and φ(x) a formula with parameters from N .
We define RN (φ) ≥ α by induction on α.

1. RN (φ) ≥ 0 if φ is realized in N .

2. For a limit ordinal δ, RN (φ) ≥ δ, if RN (φ) ≥ α for each α < δ.

3. RN (φ) ≥ α + 1 if

(a) There is an a ∈ M and a formula ψ(x,y) such that both φ(x)∧
ψ(x, a) and φ(x) ∧ ¬ψ(x, a) have rank at least α;

(b) for each c ∈ M there is a formula χ(x, c) isolating a complete
type over c and φ(x) ∧ χ(x, c) has rank at least α.

We write RN (φ) is −1 if φ is not realized in N . As usual the rank of
a formula is the least α such that RN (φ) 6≥ α + 1, and RN (φ) = ∞ if it
is greater than or equal every ordinal. And we let the rank of type be the
minimum of the ranks of ( finite conjunctions of) formulas in the type.

Note that the rank of a formula φ(x,b) in M depends only on the formula
φ(x,y) and the type of b over the empty set in the sense of M . We will
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drop the subscript N in most cases. For every type p, there is a formula φ
in p with R(p) = R(φ). One can easily prove by induction that if p ⊂ q,
R(p) ≥ R(q) and that there is a countable ordinal α such that if R(p) > α
then R(p) = ∞.

Theorem 15.2 If K is ω-stable, then for every p, R(p) < ∞.

Proof. Suppose not; i.e. there is a type p ∈ Sat(M) with M atomic and
R(p) = ∞. Then for any finite subset C of M and any c ∈ M there are
finite C ′ containing cC and p′ ∈ Sat(M) such that p ¹ C = p′ ¹ C, but
p ¹ C ′ and p′ ¹ C ′ are contradictory and principal. (For this, note that if
φ(x) generates p ¹ C, R(φ) = ∞ ≥ ω1+2. Thus there is a and ψ witnessing
3a) of the definition of rank so both φ(x) ∧ ψ(x, a) and φ(x) ∧ ¬ψ(x, a)
have rank at least ω1 + 1. Letting C ′ = Cac and applying 3b) we find a
complete extension over C ′ with rank at least ω1.

Thus, we can choose by induction finite sets Cs and formulas φs for
s ∈ 2<ω such that:

1. If s ⊂ t, Cs ⊂ Ct and φt → φs.

2. For each σ ∈ 2ω,
⋃

s⊂σ Cs = M .

3. φs0(x) and φs1(x) are over Cs and each generates a complete type
over Cs.

4. φs0 and φs1 are contradictory.

In this construction the fact that we choose C ′ above to include an arbi-
trary a allows us to do 2) and the φs0 and φs1 generate appropriate choices
of p ¹ Cs, p′ ¹ Cs. Now, each pσ generated by 〈φs : s ⊂ σ〉 is in Sat(M) by
conditions 2) and 3) so we contradict ω-stability. ¤15.2

Definition 15.3 A complete type p over A splits over B ⊂ A if there
are b, c ∈ A which realize the same type over B and a formula φ with
φ(x,b) ∈ p and ¬φ(x, c) ∈ p.

We will want to work with extensions of sets that behave much like
elementary extension.

Definition 15.4 Let A ⊂ B ⊆ M ∈ K. We say A is Tarski-Vaught in B
and write A ≤TV B if for every formula φ(x,y) and any a ∈ A, b ∈ B, if
M |= φ(a,b) there is a b′ ∈ A such that M |= φ(a,b′).

Exercise 15.5 If M ∈ K and MB is atomic then M ≤TV MB.

Lemma 15.6 (Weak Extension) For any p ∈ Sat(A); if A ≤TV B, B
is atomic and p does not split over some finite subset C of A, there is an
extension of p to p̂ ∈ Sat(B) which does not split over C.



15. Independence in ω-stable Classes 69

Proof. Put φ(x,b) ∈ p̂ if and only if there is a b′ in A which realizes
the same type as b over C and φ(x,b′) ∈ p. It is easy to check that p̂
is well-defined, consistent, and doesn’t split over C, let alone A. Suppose
for contradiction that p̂ 6∈ Sat(B). Then for some e realizing p̂ and some
b ∈ B, Cbe is not an atomic set. Let b′ ∈ A realize tp(b/C); since e
realizes p̂ ¹ A = p ∈ Sat(A), there is θ(x,y, z) that implies tp(cb′e/∅). By
the definition of p̂, θ(cb,x) ∈ p̂). Thus, θ(cbe) holds and Cbe is an atomic
set after all. ¤15.6

Lemma 15.7 Let K be ω-stable. Suppose p ∈ Sat(M) for some countable
M ∈ K. Then there is a finite C ⊂ M such that p does not split over M .

Proof. Choose finite C such that p′ = p ¹ C satisfies R(p′) = R(p).
Clearly, p does not split over C. ¤15.7

Theorem 15.8 (Extension) If p ∈ Sat(M) and M ≺ N , then there is
an extension of p to p̂ ∈ Sat(N) which does not split over M .

Proof. Choose any countable M0 ≺ M . By Lemma 15.7, there is a finite
C ∈ M0 such that p0 = p ¹ M0 does not split over C. By Lemma 15.6, p0

has a unique extension to Sat(N) which does not split over B and so not
over M . ¤15.8

Remark 15.9 Note that there is no difficulty in applying this theorem
when p is not the type of a finite sequence but the type of an infinite set A,
provided AM is atomic.

Definition 15.10 Let ABC be atomic. We write A ^
C

B and say A is free

or independent from B over C if for any finite sequence a from A, tp(a/B)
does not split over some finite subset of C.

This notion satisfies many of the same properties as non-forking on an
ω-stable first order theory but with certain restrictions on the domains of
types. In some ways, the current setting is actually simpler that the first
order setting. Every model is ‘ω-saturated’ in the sense that if A is a finite
subset of M ∈ K and p ∈ Sat(A) then p is realized in M . In particular
note that monotonicity and transitivity are immediate.

Fact 15.11

Monotonicity 1. A ^
C

B implies A ^
C ′

B if C ⊆ C ′ ⊆ B

2. A ^
C

B implies A ^
C

B′ if C ⊆ B′ ⊆ B

Transitivity If B ≤TV C ≤TV D, A ^
C

D and A ^
B

C implies A ^
B

D.
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Definition 15.12 1. p ∈ Sat(A) is stationary if for every (some) M ∈
K with A ⊂ M ,there is a unique extension p̂ of p to Sat(M) that
does not split over A.

2. If p ∈ Sat(M) does not split over A and p ¹ A is stationary then we
say p is based on A.

Lemma 15.13 1. If p ∈ S(M), then

(a) p is stationary

(b) there is finite C ⊂ M such that P ¹ C is stationary.

2. If K is ω-stable, K is stable in every cardinality.

1a) is trivial; for 1b) choose a formula over a finite subset with the same
rank. 2) is now obvious.

Note this does not imply for arbitrary atomic classes that p̂ is realized
in a model.

We need a strengthening of the extension property.

Lemma 15.14 Suppose A is finite. If p ∈ Sat(A) is stationary and then
for any B containing A, there is a unique non-splitting extension of p to
p̂ ∈ Sat(B).

Proof. Fix M ∈ K containing A and q is the unique non-splitting exten-
sion of p to Sat(M). Put φ(x, c) ∈ p̂ if and only if there is a b′ in A which
realizes the same type as b over A and φ(x,b′) ∈ q. Since M is ω-saturated,
it is easy to check that p̂ is well-defined, consistent, and doesn’t split over
A. Suppose for contradiction that p̂ 6∈ Sat(B). Then for some e realizing p̂
and some b ∈ B, Abe is not an atomic set. Let b′ ∈ M realize tp(b/A).
By definition, for any θ(x,y, z), θ(x,b,a) ∈ p̂ if and only if θ(x,b′,a) ∈ q.
But q ¹ ab′ is principal so p̂ ¹ b, a is principal as required. ¤15.14

We have justified the following notation.

Notation 15.15 If p ∈ Sat(A) is based on a, for any B ⊇ a we denote by
p|B the unique nonsplitting extension of p ¹ a to Sat(B).

Probably the most difficult result to establish is symmetry; we need an
auxiliary notion.

Definition 15.16 The formula φ(x,y) has the κ order property for K if
there exist 〈ai, bi : κ〉 such that

φ(ai,bj) if and only if i < j.

Remark 15.17 Depending on what we know about the size of models we
can derive κ-order property from the failure of symmetry for various κ.
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In Chapter 14, we show that if K has few models in ℵ1, then K does
not have the ℵ1-order property. If K has arbitrarily large models and is
ω-stable we get a somewhat weaker result.

We write Ai for {aj : j < i}.

Lemma 15.18 If an atomic class K with vocabulary τ has the iω1-order
property then it is not ω-stable.

Proof. Let Y = 〈ai, bi : i < iω1〉 and φ(x,y) witness the order property.
Note that Y is contained in N ∈ K, an atomic model. By Theorem 12.1,
we can find a vocabulary τ∗ extending τ and a sequence Z of order indis-
cernibles such that Φ = D(Z) ⊆ D(Y ). By compactness, we can assume
that Z has the order type of the reals. By Theorem 12.1, EMτ (Z, Φ) ∈ K.
Now if W is a dense countable subset of Z, Sat(W ) is uncountable and we
finish. ¤15.18

To show symmetry we want to deduce some version of the order property
from it’s failure. We need to build long sequences of non-splitting exten-
sions; we start with ω1.

Definition 15.19 The atomic set A ⊂M is good if the isolated complete
types over A are dense in S(A).

Note that if A and Sat(A) are countable, then A is good, since the isolated
types are dense in any countable Stone space.

Is that line a cheat?

Moreover, if Ma is atomic, |Sn
at(Ma)| ≤ |Sn+m

at (M)| where lg(a) = m
and the superscript denotes the arity of the type. (Mapping tp(d/Ma) to
tp(ad) is an injection.) So we have:

Lemma 15.20 If M is countable then for any p ∈ Sat(M), and a realizing
p, Ma is good.

Lemma 15.21 Suppose M is countable and let A ⊆ M and p ∈ Sat(A). If
p extends to a type p0 in Sat(M) then there exist 〈ai : i < ω1〉 of realizations
of p in a model M ∈ K.

Proof. Define 〈ai : i < ω1〉 and 〈Mi : i < ω1〉 by induction. M0 = M
and a0 is realization of p0. Take limits at successors. Let ai realize a non-
splitting extension pi of p0 to Mi; pi is not realized in M ′ because pi does
not split over M . Let Mi+1 be primary over Miai (Mi+1 exists since Miai

is countable and good).

Remark 15.22 Note that we can carry this induction on countable sets
because of Lemma 15.20. Extending this induction beyond ω1 requires the
use of n-dimensional cubes in ℵ0.
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Lemma 15.23 Suppose tp(ab/A) is based on some C ⊆ A. If a ^
A

b and

b /̂
A

a then some formula has the ℵ1-order property for K.

Proof. Suppose for contradiction that b /̂
A

a. Then there is a formula

φ(x, z, y) and m ∈ A such that if b′^
A

a and b′ ≡A b, then ¬φ(a,m, b′)

but φ(a,m, b). Now, let a = a0, b = b0; invoke Lemma 15.21 to choose
for i < ω1, bi+1 to realize the nonsplitting extension of tp(b/M) to AiBi

(guaranteed by Lemma 15.14 and then ai+1 to realize the nonsplitting
extension of tp(a/M) to AiBi+1.

Case i < j: Since bj ^
C

a0, by the choice of φ, we have ¬φ(a0,m, bj) and since

a0m ≡C aim, and bj ^
C

Ai+1, ¬φ(ai,m, bj).

Case i ≥ j: We have φ(a0,m, b0) and a0 ≡Cmb0 ai so φ(ai,m, b0) holds. Further
tp(ai/ABj+1) does not split over A and bj ≡M b0 so φ(ai,m, bj)

Thus, φ(x,m, y) has the ω1-order property. ¤15.23

We need to write in the exact hypothesis when to order property situation is
resolved.

Theorem 15.24 If a^
A

b then b ^
A

a.

The ‘ω-saturation’ eliminates for types over models the distinctions be-
tween orthogonality and weak orthogonality that are important in the first
order case.

Definition 15.25 Let p, q ∈ Sat(A) be stationary.

1. We say p is weakly orthogonal to q and write p ⊥w q if any realiza-
tions of p and q respectively are independent over M .

2. We say p is orthogonal to q and write p ⊥ q if for any B ⊇ A with
B ⊆ M ∈ K, p|B ⊥w q|B.

Note that p|B ⊥w q|B means p|B |= p|Ba, if a |= q|B.
Since the nonsplitting independence relation satisfies transitivity, sym-

metry and monotonicity, we have by the same abstract argument as Corol-
lary II.2.10 of [1].

Lemma 15.26 Suppose tp(a/A) and tp(b/A) are based in A. If ab ^
A

B

then a^
A

b iff a^
B

b.
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Exercise 15.27 Prove Lemma 15.26.

Using Lemma 15.26 again, we see that in this context weak orthogonality
over models implies orthogonality. This is analogous to the same proposi-
tion for ω-saturated models of countable first order ω-stable theories.

Lemma 15.28 If M ∈ K and a ^
M

b, then for any N ⊃ M , if a′ |=
tp(a/M)|N) and b′ |= tp(a/M)|N) then a′^

N
b′.

Proof.
Suppose a′ /̂

N

b′. Choose finite e ∈ N so that tp(a′b′/N) is based on e

and p|Me 6|= q|Me ; choose finite d ∈ M so that tp(abe/M) is based on d.
Choose a∗b∗e∗ ∈ M with a∗b∗e∗ ≡d a′b′e. Now a ≡d a∗ and b ≡d b∗.
By Lemma 15.26, a∗ /̂

ed
b∗, i.e. p|ed 6|= q|ed. But this contradicts the choice

of e and a∗b∗e∗. ¤15.28
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16
Consequences of Excellence

Definition 16.1 The atomic aec K is excellent if

1. K is ω-stable;

2. Nonsplitting is symmetric.

3. For every n, K satisfies the (ℵ0, n)-existence property.

We need a little notation to define the (ℵ0, n)-existence property.

Notation 16.2 An independent (λ, n)-system is a family of models 〈Ms :
s ⊂ n〉 such that:

1. Each Ms ∈ K has cardinality λ.

2. If s ⊆ t, Ms ≺K Mt.

3. For each s, As =
⋃

t⊂s Mt is atomic.

4. For each s, Ms ^
As

Bs where Bs =
⋃

t 6⊂s Mt.

We follow [20] here; Shelah [31] uses (λ, n)-existence for a slightly different
property.

Definition 16.3 K satisfies (λ, n)-existence if there is a primary model
over

⋃
t⊂n Mt for every independent (λ, n)-system.



76 16. Consequences of Excellence

The main result is to show that if the (ℵ0, n)-existence property holds for
all n then the (λ, n)-existence property holds for all λ. But first we deduce
the actual property that we use later.

We need one technical lemma first. Compare below.

Lemma 16.4 Suppose B ≤TV C. If for some b ∈ B, φ(x,b) isolates
tp(d/B) and dC is atomic then φ(x,b) isolates tp(d/C).

Proof. Fix any ψ(x, c) (with c ∈ C) that is satisfied by d. Since B ≤TV

C, there is a c′ ∈ B with c ≡b c′. Now φ(x,b) implies either ψ(x, c′)
or ¬ψ(x, c′) and the same implication holds for ψ(x, c′). Since we have
φ(d,b) ∧ ψ(d, c), it must be that (∀x)φ(x,b) → ψ(x, c). ¤16.4

Lemma 16.5 If for all µ < λ, the (µ, 2)-existence property holds then for
any model M of cardinality λ and any a such that Ma is atomic, there is
a primary model N over Ma.

Proof. Write M as an increasing continuous chain of Mi with |Mi| = |i|+
ℵ0. Since M0 is countable, there is a primary model N0 over M0a. By the
extension axiom, we may assume N0 ^

M0

M . Suppose we have constructed

an increasing continuous elementary chain Ni for i < j with Ni ^
Mi

M . If j

is a limit take
⋃

i<j Ni as Nj and note that by finite character Nj ^
Mj

M .

If j = i + 1, note that by induction (Mi, Ni,Mj) is an (|i|+ ℵ0, 2) system.
Choose Nj primary over Ni ∪ Mj by the (|i| + ℵ0, 2)-existence property.
This completes the construction; it only remains to note that N =

⋃
i<λ Ni

is primary over Ma. But this follows by induction using Lemma 16.4. ¤16.5

Exercise 16.6 Verify that Nδ is primary over Mδa for limit δ.

Not quite sure where this goes. Dominance; note hypothesis is really that every
tuple in N has principal type over Ma. This may be interesting before symme-
try; note that the conclusion (without symmetry) is backwards from natural
intuition.

Lemma 16.7 Suppose N is prime over Ma and d ∈ N . Then tp(a/Md)
splits over M .

Proof. For some c ∈ M , there is a formula φ(c, a,x), satisfied by d, which
implies tp(d/Ma). In particular; φ(c, a,x) → x 6= m for any m ∈ M . Now
let C ′ be any finite subset of M , which contains c. We show tp(a/Md)
splits over C. Namely, choose d′ ∈ M with d ≡C d′. Then, we must have
¬φ(c, a,d′) as required. ¤16.7
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17
Quasiminimal Sets in Excellent Classes

In this chapter we introduce a notion of *-excellence which is intermedi-
ate in strength between Shelah’s and Zilber’s notion. We will construct
quasiminimal formulas in a *-excellent class and begin the definition of an
independence notion analogous to nonforking in first order logic.

This chapter is indirectly based on [28, 30, 31], where most of the results
were originally proved. But our exposition owes a great deal to [20, 19, 17,
10].

Recall that a model M is atomic if every finite sequence in M realizes a
principal type over the empty set. Thus if T is ℵ0-categorical every model
of T is atomic.

Following Lessmann, we give another meaning to ‘excellent’:

Definition 17.1 The atomic class K is *-excellent if

1. K is ω-stable.

2. K satisfies the amalgamation property

3. Let p be a complete type over a model M ∈ K such that p ¹ C is
realized in M for each finite C ⊂ M , then there is a model N ∈ K
with N primary over Ma such that p is realized by a in N .

Our goals are:

1. Show in ZFC that *-excellent classes satisfy Morley’s theorem.

2. Show assuming the weak continuum hypothesis that if an atomic class
K is categorical up to ℵω, then it is ∗-excellent.
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We have verified in Chapter ?? that excellence implies Conditions 2
(STILL TO DO) and 3. We now show that this implies that Galois-types
are syntactic types in this context and that K has arbitrarily large models.

delete?? Lessmann ([19] also assumes that K has arbitrarily large models but
as we see below that is a actually a consequence of ∗-excellence as described
here. That hypothesis yields ω-stability easily by Lecture 5, but ω-stability can
be gotten more cheaply (or at least at a different price) as we will see below.

Note that types over sets make syntactic sense as in first order logic, but
we have to be careful about whether they are realized. By 3) of Defini-
tion 17.1, p ∈ Sat(M) if and only if p ¹ C is realized in M for each finite
C ⊂ M .

think about next two.

Exercise 17.2 If M ≺ N ∈ K, where K is *-excellent and p ∈ Sat(M)
then p extends to q ∈ Sat(N).

Lemma 17.3 If K is *-excellent then Galois types over a model M are
the same as syntactic types in Sat(M).

Proof. Equality of Galois types is always finer than equality of syntactic
types. But if a, b realize the same p ∈ Sat(M), by 2) of Definition 17.1, we
can map Ma into any model containing Mb and take a to b so the Galois
types are the same. ¤17.3

Note however, we have more resources here than in a general AEC. The
types in Sat(A) for A atomic play an important role; in general there is no
notion of types over all subsets of models of K.

Lemma 17.4 Let A ⊆ M and p ∈ Sat(A). TFAE:

1. There is an N with M ≺ N and c ∈ N −M realizing p; i.e. p extends
to a type in Sat(M).

2. For all M ′ with M ≺ M ′ there is an N ′, M ′ ≺ N ′ and some d ∈
N ′ −M ′ realizing p.

Proof: 2) implies 1) is immediate. For the converse, assume 1) holds.
Without loss of generality, by amalgamation, M ′ contains N . Let q =
tp(c/M). By Theorem 15.8, there is a nonsplitting extension q̂ of q to
Sat(M ′). By Assumption 17.1 3) q̂ is realized in N ′ ∈ K. Moreover, it is
not realized in M ′ because q̂ does not split over M . ¤17.4

For countable M ′, we will see below how to get M ′ via the omitting types
theorem. But the existence of N ′ for uncountable cardinalities requires the
use of n-dimensional cubes in ℵ0.
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Definition 17.5 The type p over A ⊆ M ∈ K is big if for any M ′ ⊇ A
there exists an N ′ with M ′ ≺K N ′ and with a realization of p in N ′−M ′.

By iteratively applying Lemma 17.4, we can show:

Corollary 17.6 Let A ⊆ M and p ∈ Sat(A). If there is an N with M ≺ N
and c ∈ N −M realizing p then

1. p is big and

2. K has arbitrarily large models.

Thus every nonalgebraic type over a model and every type with uncount-
ably many realizations (check the hypothesis via Lowenheim-Skolem) is big.
But if we consider K to contain only one model: two copies of (Z, S), we
see a type over a finite set can have infinitely many realizations without
being big.

With this technology we can prove a nice result. Let’s update our notion
of saturation for this context.

Definition 17.7 1. The model M ∈ K is λ-full over A ⊂ M if for
every C ⊂ M with |C| < λ, if p is based on A then p|AC is realized
in M .

2. M is λ full if for every A ⊂ M with |A| < λ and every p ∈ Sat(A)
that is based in A, is realized in M .

We use clause 1) when constructing for example countable models M
which are full over a countable set A.

We would like to have the hypothesis be ω-stable atomic class with amalgama-
tion. But we don’t know in general that ‘every p based on A can be extended
to p̂ ∈ Sat(MA) for MA with A ⊂ MA ⊂ M ’.

Lemma 17.8 Let K be a *-excellent class.
Suppose |M | = λ > ℵ0. Then M is Galois-saturated if and only if M is

λ-full.

Proof. Since ω-stability implies that if p ∈ Sat(N) then p is based on
N , a full model is Galois-saturated. But since every p based on A can be
extended to p̂ ∈ Sat(MA) for MA with A ⊂ MA ⊂ M and |A| = |MA|,
every Galois-saturated model is full. ¤17.8

Lemma 17.9 Let K be an ω-stable atomic class. If Mi : i < δ for δ ≤ λ
are λ-full with λ uncountable then M =

⋃
i<δ Mi is also λ-full.

Proof. This is immediate if δ < cf(λ). Let A ⊂ M with |A| < λ and
suppose p ∈ Sat(A) is based on d ∈ A. Let r ∈ Sat(M) be the unique
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nonsplitting extension of p to Sat(M). Without loss of generality d ∈ M0.
Let ai for i < δ enumerate all finite tuples from A. For each ai, choose
a finite subset Xi of M0 such that tp(ai/M0) is based on Xi, Using the
λ-fullness of M0, construct E ⊂ M0 such that E = 〈ei : i < δ + 1〉 and
Ni for i < λ such that: d ∈ N0, for i < δ, Xi ∈ Ni |Ni| = |Ei| + LS(K),
M0Ei ⊂ Ni, tp(ei/Ni) = r|Ni. Let note |Nδ| < λ. Then A ^

N
M0. Let

e = eδ. By symmetry e ^
N

A and by the choice of N , e ^
d

N . By transitivity

e realizes r|A = p and we finish.

Theorem 17.10 Let K be a *-excellent class. Then K has λ-full models
of cardinality λ for all λ.

Proof. Note that by the proof of Lemma 11.15 (Note only stability was
used to get the saturated model.) we have a Galois-saturated model of
cardinality λ for every uncountable regular λ. Now for singular λ take a
sequence of λi saturated models for λi tending to λ and apply Lemma 17.9
to get a model M which is λi-saturated for each λi. But then it is λ-
saturated since the λi sup to λ. ¤17.10

Definition 17.11 The type p ∈ Sat(A) is quasiminimal if p is big and for
any M containing A, p has a unique extension to a type over M which is
not realized in M .

Note that whether q(x, a) is big or quasiminimal is a property of tp(a/∅).
Since every model is ω-saturated the minimal vrs strongly minimal diffi-
culty does not arise.

Now almost as one constructs a minimal set in the first order context,
we find a quasiminimal type; for details see [19]

Lemma 17.12 Let K be excellent. For any M ∈ K, there is a c ∈ M and
a formula φ(x, c) which is quasiminimal.

Proof. It suffices to show the countable model has a quasiminimal formula
φ(x, c) (since quasiminimality of depends on the type of c over the empty
set). As in the first order case, construct a tree of formulas which are
contradictory at each stage and are big. But as in the proof of Lemma 15.7
make sure the parameters in each infinite path exhaust M . Then, if we can
construct the tree ω-stability is contradicted as in Lemma 15.7. So there is
a quasiminimal formula. ¤17.12

Definition 17.13 Let c ∈ M ∈ K and suppose φ(x, c) generates a quasi-
minimal type over M . For any elementary extension N of M define cl on
the set of realizations of φ(x, c) in N by a ∈ cl(A) if tp(a/Ac) is not big.

Equivalently, we could say a ∈ cl(A) if every realization of tp(a/Ac) is
contained in each M ′ ∈ K which contains Ac.
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Lemma 17.14 Let c ∈ M ∈ K and suppose φ(x, c) generates a quasi-
minimal type over M . If the elementary extension N of M is full with
|N | > |M |, then cl defines a pregeometry on the realizations of φ(x, c) in
N .

Proof. Clearly for any a and A, a ∈ A implies a ∈ cl(A). To see that cl
has finite character note that if tp(a/Ac) is not big, then it differs from the
unique big type over Ac and this is witnessed by a formula so a is in the
closure of the parameters of that formula.

For idempotence, suppose a ∈ cl(B) and B ⊆ cl(A). Use the comment
after Definition 17.13 Every M ∈ K which contains A contains B and
every M ∈ K which contains B contains a; the result follows.

It is only to verify exchange that we need the fullness of N . Suppose
a, b |= φ(x, c), each realizes a big type over A ⊆ φ(N) and r = tp(b/Aac) is
big. Since r = tp(a/Ac) is big and N is full we can choose λ realizations ai

of r in N . Let M ′ ≺ N contain the ai and let b′ realize the unique big type
over M ′ containing φ(x, c). Since tp(b/Aac) is big, the uniqueness yields
all pairs (ai, b

′) realize the same type p(x, y) ∈ S(Ac) as (a, b). But then
the ai are uncountably many realization of tp(a/Abc) so this type is big as
well; this yields exchange by contraposition. ¤17.14

So the dimension of the quasiminimal set is well-defined. To conclude
categoricity, we must show that dimension determines the isomorphism
type of the model; this is the topic of the next chapter.
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18
Two Cardinal Models and Categoricity
Transfer

We work in a *-excellent atomic class K. That is, K is the class of atomic
models of a first order theory T , which was obtained from a complete sen-
tence in Lω1,ω by adding predicates for all formulas in a countable fragment
L∗ of Lω1,ω. The vocabulary for K is τ .

Definition 18.1 The type p(x) ∈ Sat(M) is definable over the finite set
c if for each formula φ(x) there is a formula (dpx)φ(x,y)[y, c] with free
variable y such that (dpx)φ(x,y)[m, c] holds for exactly those m ∈ M such
that φ(x,m) ∈ p. This is a defining schema for p.

The following lemma is taken without proof (or even mention) in the
proof of Lemma 4.2 of [28]. In the proof we expand the language but in a
way that does no harm.

Lemma 18.2 There is an atomic class K1 in a vocabulary τ1, whose mod-
els are in 1-1 correspondence with those of K such that: for each τ1-formula
φ(x,y) and countable ordinal α, there is a τ1-formula Pφ,α(y) such that in
any model M in K1, Pφ,α(m) holds if and only if RM (φ(x,m)) ≥ α.

Proof. Define a sequence of classes and vocabularies τ i, Ki by adjoining
predicates in τ i+1 which define rank for τ i-formulas. Note that reduct is a
1-1 map from τω structures to τ -structures. Then τω, Kω are the required
τ1, K1. ¤18.2

Henceforth, we assume K satisfies the conclusion of Lemma 18.2.

Lemma 18.3 Let K be ω-stable. Every type over a model is definable.
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Proof. Now let N be an atomic model of T and let p ∈ Sat(N); choose
φ(x, c) so that R(p) = R(φ(x, c)) = α. Now for any ψ(x,d), ψ(x,d) ∈ p
if and only if R(φ(x, c) ∧ ψ(x,d)) = α. And, the collection of such m is
defined by Pφ(x,c)∧ψ(x,y),α(y, c). ¤18.3

Note that if p doesn’t split over C with C ⊂ M ≺ N and p̂ ∈ Sat(M) is
a nonsplitting extension of p, p̂ is defined by the same schema as p.

We abuse standard notation from e.g. [18] in our context. Note that we
have restrict our attention to big formulas. This will give us two cardinal
transfer theorems that read exactly as those for first order but actually
have different content because the first order versions refer arbitrary infinite
definable sets.

Definition 18.4 1. A triple (M, N, φ) where M ≺ N ∈ K with
M 6= N , φ is defined over M , φ big, and φ(M) = φ(N) is called
a Vaughtian triple.

2. We say K admits (κ, λ), witnessed by φ, if there is a model N ∈ K
with |N | = κ and |φ(N)| = λ and φ is big.

Of course, it is easy in this context to have definable sets which are
countable in all models. But we’ll show that this is really the only sense
in which excellent classes differ from stable theories as far as two cardinal
theorems are concerned.

The overall structure of the proof of the next result is based on Propo-
sition 2.21 of [20]; but in the crucial type omitting step we expand the
argument of Theorem IX.5.13 in [1] rather than introducing nonorthogo-
nality arguments at this stage.

Lemma 18.5 Suppose K is *-excellent.

1. If K admits (κ, λ) for some κ > λ then K has a Vaughtian triple.

2. If K has a Vaughtian triple, for any (κ′, λ′) with κ′ > λ′, K admits
(κ′, λ′).

Proof. Suppose N ∈ K with |N | = κ and |φ(N)| = λ. For notational
simplicity we add the parameters of φ to the language. By Löwenheim-
Skolem, we can embed φ(N) in a proper elementary submodel M and get a
Vaughtian triple. We may assume that M and N are countable. To see this,
build within the given M,N countable increasing sequences of countable
models Mi, Ni, fixing one element b ∈ N −M to be in N0 and choosing
Mi ≺ M , Ni ≺ N , Mi ≺ Ni and φ(Ni) ⊂ φ(Mi+1). Then Mω, Nω are as
required.

Now for any κ′, we will construct a (κ′, ω) model. Say b ∈ N −M and
let q = tp(b/M). Now construct Ni for i < κ′ so that Ni+1 is primary
over the Nibi where bi realizes the non-splitting extension of q to Sat(Ni).
Fix finite C contained in M so that q does not split over C. We prove by
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induction that each φ(Ni) = φ(M). Suppose this holds for i, but there is
an e ∈ φ(Ni+1) − φ(M). Fix m ∈ Mi and θ(x, z, y) such that θ(bi,m, y)
isolates tp(e/Mi). We will obtain a contradiction.

For every n ∈ N , if (∃y)(θ(b,n, y)∧φ(y) then for some d ∈ M , θ(b,n, d)∧
φ(d) holds. Thus,

(∀z)[(dqx)(∃y)θ(x, z, y) ∧ φ(y))[z, c] → (∃y)φ(y) ∧ (dqx)θ(x, z, y)[z, y, c]].

We have θ(bi,m, e), so Mi |= (dqx)((∃y)θ(x, z, y)∧φ(y)))[m, c]. Thus by
the displayed formula Mi |= (∃y)φ(y)∧(dqx)(θ(x, z, y))[m, y, c]. That is, for
some d ∈ M , Mi |= (dqx)(θ(x, z, y))[m, d, c]. Since tp(bi/Mi is defined by
dq, we have θ(m, d, c). But this contradicts the fact that θ(bi,m, y) isolates
tp(e/Mi).

Thus, we have constructed a model Mµ of Mµ power µ where φ is satisfied
only countably many times. To construct a (κ′, λ′) model, iteratively realize
the non-splitting extension of φ, λ′ times.

¤18.5

We need one further corollary of Therorem 16.5.

Lemma 18.6 If p ∈ S(M0) is quasiminimal and X is an independent set
of realizations of p, there is a primary model over MX.

Proof. Let X = {xi : i < λ}. By Theorem 16.5 define Mi+1 to be primary
over Mixi, taking unions at limits. ¤18.6

Exercise 18.7 Use the independence of X to verify that for limit δ, Mδ

is in fact primary over Xδ.

Now we conclude that categoricity transfers.

Theorem 18.8 Suppose K is *-excellent. The following are equivalent.

1. K is categorical in some uncountable cardinality.

2. K has no two cardinal models.

3. K is categorical in every uncountable cardinal.

Proof. We first show 1) implies 2). Suppose for contradiction that there is
a two-cardinal model (M, N, φ) even though K is κ-categorical for some un-
countable κ.By Theorem 18.5 K has (κ,ℵ0)-model. But by Theorem 17.10,
if it is categorical there is a full model in the categoricity cardinal and every
big definable subset of a full model has the same cardinality as the model.

3) implies 1) is obvious; it remains to show 2) implies 3). Let M0 be the
unique countable model. By Lemma 17.12, there is a quasiminimal formula
φ(x, c) with parameters from M0. For any λ, by Theorem 17.10, there is a
full model N of K extending M0 with cardinality λ. By Lemma 17.14, cl is
a pregeometry on φ(N). Note that φ(M) is closed since by definition any el-
ement a of cl(φ(M)) both satisfies φ and is in every model containing φ(M),
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including M . Thus we can choose a basis X for φ(M). By Theorem 18.6,
there is a prime model M|X| over MX. But X ⊂ φ(M|X|) ⊂ φ(M) so
φ(M|X|) = φ(M); whence since we assume there are no two cardinal mod-
els, M|X| = M and M is prime and minimal over MX.

Now we show categoricity in any uncountable cardinality. If M , N are
models of power λ, they are each prime and minimal over X, a basis for
φ(M) and Y , a basis for φ(N), respectively. Now any bijection between X
and Y is elementary by the moreover clause in Lemma 17.14. It extends to
a map from M into N by primeness and it must be onto; otherwise there
is a two cardinal model. ¤18.8
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19
Demystifying Non-excellence

In this chapter we expound the Hart-Shelah example of a sentence ψ in
Lω1,ω which is categorical in ℵ0,ℵ1 but not in 2ℵ1 . More generally for each
k the construction provides a sentence which is categorical up to ℵk but not
categorical everywhere. We outline the general construction but specialize
to k = 2 for many specific arguments.

This example is a descendent of the example in [3] of an ℵ1-categorical
theory which is not almost strongly minimal. That is, the universe is not
in the algebraic closure of a strongly minimal set. Here is a simple way to
describe such a model. Let G be a strongly minimal group and let π map
X onto G. Add to the language a binary function t for the fixed-point free
action of G on π−1(g) for each g ∈ G. This guarantees that each fiber has
the same cardinality as G and π guarantees the number of fibers is the
same as |G|. Since there is no interaction among the fibers, categoricity in
all uncountable powers is easy to check.

19.1 The basic structure

Notation 19.1 The formal language for this example contains unary pred-
icates W,Z2, I,K, Ga, G∗,Ha, H∗; binary functions eG taking G×K to Z2

and eH taking H ×K to Z2; function πG mapping G∗ to W ×K, function
πH mapping H∗ to K, a 5-ary relation t on W ×K × Ga × G∗ × G∗), a
4-ary relation symbol h, K ×Ga ×H∗ ×H∗), and ternary relations q` on
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for ` < ω on G∗ ×G∗ ×H∗. Certain other projection functions are in the
language but not expressly described.

We will construct a structure M(I) from any infinite set I. The structure
will be a disjoint union of sets I, K, Z2, G

a,Ha, G∗ and H∗. All except G∗

and H∗ will be completely determined by I. For standard structures G∗

and H∗ will also be completely determined. Let K = [I]k be the set of k
element subsets of I and let G be the direct sum of K copies of Z2 so G and
K have the same cardinality. We are going to put a structure on K × G.
(A priori, we might as well have indexed by I! The connection with K will
only appear with the introduction of the Q` at the end of the construction.)

The basic object in the construction is a family of copies of the group
G, indexed by a set W ×K. W will be a copy of ω, which is required to
provide some coding in the non-categoricity proof; we point this out at
the appropriate time. We add constants c` for the elements of W and the
sentence ψ saying they exhaust W . The basic object should be categorical
in all powers. This is achieved in two steps. We include K, Ga (naming G)
and Z2 as sorts of the structure with the evaluation function: for γ ∈ G and
k ∈ K, eG(γ, k) = γ(k) ∈ Z2. So in Lω1,ω we can say that the predicate
Ga denotes exactly the set of elements with finite support of KZ2. Now,
we introduce a set G∗. We say a model is G-standard if G∗ is W ×K ×G
but we don’t have all the projection functions which would allow us to say
that. Rather we have only the projection function πG from G∗ onto W×K.
We write v ∈ G`,u when πG(v) = (`, u) and say v is in the (G)-stalk over
`, u. Thus, W × K indexes a partition of G∗. The relation t(`, u, v, w, x)
is the graph of the action (by addition) of Ga on each member G`,u of
the partition indexed by W × K. That is t(`, u, v, w, x) holds where w =
(`, u, w′), x = (`, u, x′), v ∈ G and v + w′ = x′. So each class is an (affine)
copy of G.

This much of the structure is clearly categorical (and homogeneous). So
we must work harder.

We consider a new group H, the direct sum of ω copies of Z2 (again
explicitly represented as a subset Ha of W Z2, with a sort for W and the
evaluation function, eH). Again we add a set H∗ and a function πH taking
H∗ to K. When H∗ is K ×H, we say the model is H-standard. As before
πH(x) = u holds if x has the form (u, x′). Finally h(u, v, w, x) is the graph
of the action (by addition) of Ha on each member Hu of the partition of
H∗ indexed by K.

This structure is still categorical. To see this, suppose two such models
have been built on I and I ′ of the same cardinality. Take any bijection
between I and I ′. To extend the map to G∗ and H∗ fix one element in each
partition class in each model. The natural correspondence (linking those
selected in corresponding classes) extends to an isomorphism.

The key step is the definition of a family of relations Q` that witness the
failure of k-dimensional amalgamation. For concreteness we fix k = 2. The
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structure is imposed by a family of 3-ary relations Q` on G∗ × G∗ × H∗,
which have a local character. Q` only holds of elements with first coordinate
`. Moreover, Q`((`, u1, x1), (`, u2, x2), (u3, x3)) implies that u1, u2, u3 are
the three two element subsets of a 3 element subset of I. We call u1, u2, u3

a compatible triple. (Suitable projections are in the language to express
this.) Finally, Q`((`, u1, x1), (`, u2, x2), (u3, x3)) holds just if

x1(u3) + x2(u3) = x3(`).

This completes the description of the example.

19.2 k = 2, ℵ1-categoricity

We now show that with k = 2 the structure is ℵ1-categorical. We choose
global sections for the maps πG and πH .

Definition 19.2 Fix a model M . A solution for M is a selector f that
chooses one element of the fiber in G∗ above each element of W ×K and
one element of the fiber in H∗ above each element of K. Formally, f is
a pair of functions (f0, f1), where f0 : W (M) × K(M) → G∗(M) and
f1 : K(M) → H∗(M) such that πGf0 and πHf1 are the identity and for
each ` and compatible triple u1, u2, u3,:

Q`([(`, u1), f0(`, u1)], [(`, u2), f0(`, u2)], (u3, f1(u3))).

Lemma 19.3 If M and N have the same cardinality and have solutions
fM and fN then M ∼= N .

Proof. Without loss of generality, M = M(I), N = M(I ′). Let α be an
arbitrary bijection between I and I ′. Extend naturally to a map from K(M)
to K(N) and from Ga(M),Ha(M) to Ga(N),Ha(N); let α(fM (`, u)) be
fN (`, α(u)). If x ∈ G∗(M), and M |= πG(x) = (`, u), there is a unique
a ∈ Ga(M) such that

M |= t(c`, u, a, fM (`, u), x).

Let α(x) be the unique y ∈ N such that

N |= t(c`, α(u), α(a), fN (`, u), y).

Do a similar construction for H∗ and observe that each Q` is preserved.
¤19.3

Slightly more generally, we describe selectors over subsets of I(M) rather
than all of I(M).
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Definition 19.4 There is a solution for the subset A of I(M) if for each
2-set u from [A]2 and each ` there are f0(`, u) ∈ G`,u and f1(u) ∈ Hu such
that if u1, u2, u3 are a compatible triple from A2, for every `,

Q`([(`, u1), f0(`, u1)], [(`, u2), f0(`, u2)], (u3, f1(u3))).

Fact 19.5 If |M | ≤ ℵ1, M has a solution.

Proof. Note first that it suffices to show that if there is a solution
f = (f0, f1) over a countable set A ⊂ I(M) then for any b ∈ I(M) it
can be extended to a solution f ′ = (f ′0, f

′
1) over A ∪ {b}. To show the

extension property, enumerate A as ai for i < ω. For each i, choose ar-
bitrarily f ′1(ai, b) ∈ Hai,b. Then prove by induction on n that f0 can be
further extended to a solution f ′0 over all tuples (`, (ai, b)) for `, i ≤ n. At
the induction step, we must define f ′0(`, (an+1, b)) compatibly with our pre-
vious choices of the f ′0(`, (an+1, ai)) and f ′1((ai, b)) for i ≤ n. This ability
is guaranteed by the following fact which holds in the original structure
as the conditions fix only a finite number of values of the element to be
chosen. ¤19.5

Fact 19.6 If ` ∈ W , a1, . . . an+1, b are in I, xj ∈ Gc`,(an,aj) for 1 ≤ j ≤ n,
and for each 1 ≤ j ≤ n, yj ∈ Hb,aj then

(∃x)
∧

1≤j≤n

πG(x) = (`, (aj , b)) ∧Q`(x, xj , yj).

But we are stymied at ℵ2 since adding any new point to a set of size ℵ1

gives us ℵ1 conditions to meet.

19.3 k = 3, ℵ2-categoricity

The argument above seems to depend only on ℵ0-homogeneity and doesn’t
illustrate how the categoricty is carried to higher cardinalities by increasing
k. But the idea becomes clearer if we take k equal to 3.

Here is a soft argument that moves from a configuration of countable
models to categoricity in higher cardinals. We have already seen that if
for A ⊆ B, both with cardinality ℵn, A-solutions extend to B-solutions
then there is a solution for sets of cardinality ℵn+1. So to get a solution of
cardinality ℵ2 we need to have extension at ℵ1. Again, it suffices to extend
a set of cardinality ℵ1 by one point. Writing the set as union of countable
sets, it suffices to be able to amalgamate the solutions of two one point
extensions of a countable set.

We show that 3-dimensional amalgamation holds in ℵ0, when k = 3.

Lemma 19.7 Let k = 3. Let A be a countable subset of I, b0, b1 ∈ I−A. If
f = (f0, f1) and g = (g0, g1) are solutions over A0 = A∪{b0}, A1 = A∪{b1}
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respectively, which agree on A, there is a solution h over A01 = A∪{b0, b1}
which extends both g and f .

Proof. With k = 3, the object of interest is a compatible four tuple
u0, u1, u2, u3, the four 3-element subsets of b0, b1, b2, b3. For each ` there
are two of the four arguments of Q` that have not been defined by g or f .
Show the analog to Fact 2. ¤19.7

It is instructive to try to show amalgamation for countable sets with
k = 2; the assymetry between the selectors for H∗ and G∗ and the diago-
nalization combine to frustrate such an attempt.

For larger n, one shows n-dimensional amalgamation on ℵ0 descends
step by step to 2-dimensional amalgamation on ℵn−2, and thus extension
on ℵn−1 and categoricity in ℵn.

19.4 Failure of Categoricity in 2ℵ1

In general φ is not 2ℵk−1 -categorical; so for the k = 2 case, we will have φ
is ℵ0 and ℵ1 categorical but not 2ℵ1 -categorical.

Fix the least λ with λℵ1 < 2λ. Clearly, λ is between ℵ1 and 2ℵ1 . We
will show φ has 2λ models of power λ. It is easy to see that if K is not
categorical in some κ; it not categorical in any larger κ′. There is a model
of power κ′ which has solution, so κ′-categoricity implies the unique model
has a solution; but then so do all its submodels, which include all models
of power κ. Thus, κ′-categoricity implies κ-categoricity and in particular if
we show the failure of λ-categoricity we have the failure in 2ℵ1 .

Let H1 denote ⊗ωZ2.

Notation 19.8 For any map h from K to H1/H we define a model Mh(I).
The structure is identical to the standard structures defined above with one
exception: the fibers π−1

H (x) are not copies of H but are the cosets h(u).
That is, we have a structure which is G-standard but not H-standard.

As structures under the ‘action language’, h(u) and H are isomorphic.
But in the concrete representation the elements of H have finite support
while the elements of h(u) have infinite support. Our goal is to recognize
this and more precisely to recognize h(u). The Lω1,ω sentence ψ forces Ga

and Ha to be elements of finite support, but we can’t force this for the
fibers in G∗ (H∗) because the projection (in the standard model) from G∗

to G (H∗ to H) is not in the language.
To show the failure of categoricity we will constructed a specific family

of models, the MA. Each model is G-standard but some stalks in H∗(MA)
do not have finite support. With d as an oracle we will recover h from Mh.
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Definition 19.9 1. Fix a selector for G∗ by defining a function d:
d((`, u)) = (`, u, e) where e is the identically 0 element of G; we call
d the identity selector.

2. Let u3 = {y, z}, u1 = {x, y}, u2 = {x, z} be in K. Define the map
ηd

M (u3) from K into H1/H by ηd
M (u3){`} = 0 if

M |= Q`([`, u1, d(`, u1)], [`, u2, d(`, u2)], [u3, c]).

where c is an arbitrary element of Hu3 . The choice of c will vary
ηd

M (u3) within a coset of H1/H.

3. We may write ηM (u3) when d is the identity selector.

So if we have the identity selector d, we can compute the coset ηM (u) at
every u and the value of ηM (u) does not depend on which third point from
I we choose to construct a compatible triple.

But this procedure names |M | points; we fixed d. We will see how to
proceed naming only ℵ1-constants. Since λℵ1 < 2λ this will cause no harm;
we will guarantee that in the expanded language there are 2λ models of
cardinality λ.

We choose the set I in a very particular way and then the function h.
Let I be X ∪ ℵ1 × ℵ1 ∪ A where |X| = ℵ0 and A is a set of λ functions
a : ℵ1 → H/H1.

We define models (Mh(I), d) but I depends on the choice of A and we
will define the h uniformly for all A so we write: (MA, d). The crucial
point is the choice of the H-stalks over those members of K that have the
form (a, 〈α, β〉). For a ∈ A and 〈α, β〉 ∈ ℵ1 × ℵ1, the map h is defined
by h(a, 〈α, β〉) = a(α). That is, the fiber H(a,〈α,β〉) is the coset a(α). To
avoid interference, we set h(u) = H for all other u. Again, define d by
d((`, u)) = (`, u, e) where e is the identically 0 element of G.

Computing ηd
MA

, yields ηd
MA

(a, 〈α, β〉) is a(α) since the coset H(a,〈α,β〉)
is a(α). Now suppose d is replaced by a d′ which agrees with d on X ×
(ℵ1×ℵ1) but may disagree elsewhere. (I.e. expand the language by naming
ℵ1 constants.)

The invariant ηd′
MA

(〈α, β〉, a)) is a function ĥ ∈ H1 = 2ω. We complete
(〈α, β〉, a) to a triple by choosing an element n from X; ĥ is computed in
the model by ĥ(`) = 0 if and only if

M |= Q`([`, (n, 〈α, β〉), d′(`, (n, 〈α, β〉)], [`, (n, a), d′(`, (n, a))], [(a, 〈α, β〉), c])

where c is an arbitrary element of the H-stalk over (〈α, β〉, a). Since d and d′

are equal on stalks above elements of the form (n, 〈α, β〉), the value of ĥ on
the (a, 〈α, β〉)-stalks is determined by d′(`, (n, a)){(〈α, β〉, a)}. The relevant
values are at the (〈α, β〉, a) where d′(`, (n, a)){(〈α, β〉, a)} 6= 0. There are
of course only countably many of these for any (n, a) (finitely many for
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any (`, (n, a)). As long as there is no ` with d′(`, (n, a)){a, 〈α, β〉} 6= 0,
ηz

MA
(〈α, β〉, a) is the same function whether calculated with z as d or d′.

Since this happens for cocountably many β, we finish. That is ĥ ∈ H1/H

is in the range of a just if for ℵ1 elements i of I, ηd′
MA

(i, a) = ĥ. A is a set
of λ functions from ℵ1 into H1/H. The range of an element of a is a subset
of 2ℵ0 . So there are 22ℵ0 possible sets of ranges and 22ℵ0 ≥ 2λ so there are
2λ nonisomorphic models MA with cardinality λ.

This completes the argument for k = 2; we leave the nontrivial extension
[11] of the coding to obtain the result for larger k to the reader.

19.5 Failure of tameness

We continue the notation of the non-categoricity argument in Section 19.4
and note that there is a syntactic type p over a model of cardinality λ which
splits into several Galois types. Since over countable models Galois types
and syntactic types are the same this implies that p is not determined by
its restrictions to countable submodels. Thus mod(φ) is not (ℵ1,ℵ0)-tame.
Let A0 ⊂ A1 be sets of functions of cardinality λ. By ℵ1-categoricity M is
saturated. Let M = MA0 . By ℵ1-categoricity M is saturated so it suffices to
find a syntactic type over M which splits into several Galois types. Suppose
a, a′ ∈ A1−A0 and suppose the range of a and the range of a′ are different.
In particular, assume there is ĥ ∈ H1/H which is in the range of a but
not the range of a′. Then there can be no map fixing a model containing
X ∪ ℵ1 × ℵ1, in particular M , which maps a to a′. Because for any d′

which is the identity selector when restricted to M , for ℵ1 elements i of I,
ηd′

MA
(i, a) = ĥ but ηd′

MA
(i, a′) = ĥ for only countably many i in I. But a

and a′ realize the same syntactic type over M , since we can map one the
other by while fixing any finite subset of M .
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