AN INTRODUCTION TO EXCELLENT CLASSES

OLIVIER LESSMANN

ABSTRACT. In this paper, we present Shelah’s theory of excellence concluding

with his categoricity theorem for the class of atomic models of a countable first
order theory, under the assumption that there exists a large full model. This
allows us to do the entire work within ZFC and without any assumption on the

number of models of siz®,, in contrast to Shelah’s original treatment.

INTRODUCTION

The problem of categoricity has had a major influence on the development
of model theory. A class isategorical in some cardinal if all the models of the
class of size\ are isomorphic; the problem of categoricity is whether categoricity
in some cardinals implies categoricity in others. In the first order case, Morley’s
solution to Los conjecture [Mo], and Shelah’s generalisation to uncountable lan-
guages [Sh 70] constitute the beginning of classification theory culminating in She-
lah’s Main Gap [Sh a], while Baldwin-Lachlan’s solution [BalLa] laid the ground
for geometric stability theory.

Categoricity for classes which are not first order is a considerably more
complicated problem. It is a very active area with many partial results (see [Ke],
[Sh 3], [KoSh], [MaSh], [Sh 48], [Sh 87a], and [Sh 87b], [Sh 88], [Sh 394], [ShVi],
[Sh 576], [Sh 600], [Sh 705] to name but a few). Shelah views it as the most im-
portant problem in model theory and lists it first in [Sh 666]. He conjectures that,
if the classiC of models of a sentence i, ., is categorical in some large enough
cardinal, then it must be categorical in all large enough cardinals.

Historically, excellence arose after this conjecture was verified under the
assumption that the cla&Scontains sufficiently homogeneous models [Ke], [Sh 3].
This marked the beginning of classification fomogeneous model thepas this
context is now known. We have good notions of stability [Sh 3], [Sh 54], [GrLe],
[Hy], superstability [HySh], [HyLel]w-stability and total transcendence [Lel],
and even simplicity [BuLe]. On the other hand, we have a Baldwin-Lachlan style
theorem [Lel], as well as the beginning of geometric model theory [HLS]. At
the time of [Ke], Keisler asked whether the existence of sufficiently homogeneous
models actually followed from categoricity. Shelah answered negatively using an
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example of Markus [Ma], and introduced the theoryestellence To do this,

he first reduced the categoricity problem for the class of models of a sentence in
L., ., to the categoricity of the class of atomic models of a countable first order
theory [Sh 54]. This reduction is an important step (see Baldwin’s paper in this
volume for more details on it); it shows that proving the categoricity conjecture
for L., ., is equivalent to proving it for the apparently simpler context of the class
of atomic models of a countable first order theory. Then, in [Sh 87a], [Sh 87b],
Shelah showed:

Theorem -1.1. Assume®» < 28~+1 for eachn < w. LetK be the class of atomic
models of a countable first order theory and assume furtherihlaas fewer than
2%1 nonisomorphic models of sixg.

() If K is categorical in eacl®,,, for n < w, thenkC is excellent.
(2) If K is excellent and categorical in some uncountable cardinal, ffiés
categorical in all uncountable cardinals.

Modulo some additional properties, (1) thus shows that categoricity im-
plies excellence, while (2) is the parallel to Morley’s theorem for excellent classes.
Above, (1) has the flavour of a nonstructure result and (2) belongs to structure
theory.

In this paper, we focus on the structure part. We present a proof of (2), un-
der the assumption that there exists a ldtglenodel(see below for more details).
The existence of full models follows from excellence, and, for uncountable mod-
els, we can give an equivalent definition which makes sense for any class of atomic
models. The reason for using a full model is that it allows us to present the entire
treatment within ZFC and to remove the assumption on the number of uncountable
models; for example, we obtain all the properties of independence directly from
w-stability.

Solving the categoricity problem for excellent classes marked the begin-
ning of classification theory in this context; Grossberg and Hart developed orthog-
onality calculus, introduced regular types, and proved the Main Gap for excellent
classes [GrHa] (see the related article by Grossberg and Lessmann in this volume).
We can also prove a Baldwin-Lachlan theorem, emphasising the role of quasimin-
imal types, and introduce a U-rank for types over models and obtain a picture very
similar to the first order case [Le3]. Finally, quasiminimal types can be used to gen-
eralise Hrushovski’s result [Hr] to the context of excellent classes [HLS], starting
geometric stability theory proper. Excellence is the precursor to Shelah’s work on
good frames for the categoricity problem for abstract elementary classes [Sh 705].

Excellence appears naturally in several mathematical contexts. For exam-
ple, itis the main dividing line when studying almost free algebras [MeSh] and itis
also the key property in Zilber’s work on complex exponentiation [Zi1] and [Zi2].
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Let us now say a few words about fullness. Understanding which types are
realised in the models of a class is a difficult problem as soon as the compactness
theorem fails. For example, fix Bomogeneoumodel M of a first order theory
T. There is no criterion to understand which types are realised irdidexcept
for completeypes. We haveveak compactness complete (first order) type €
S(A),with A C M and|A| < | M]||, isrealised inV/ ifand only ifp | B is realised
in M for each finite subseB of M. In full models, we have a similar condition
but for complete types ovenodels(at least when the full model is uncountable).
An uncountable model/ of a countable first order theofl is full, if M realises
every complete (first order) type € S(IV), whereN < M and||N| < ||M]],
providedthatp | B is realised inM for each finiteB C N. This gives us a way of
dealing with complete types over models.

In this paper, we consider the claksof atomic models of a countable
first order theory. We will assume that there is a sufficiently large méidel
which is full; we do not assume that every (small) modekaf in € (this will be
proved in the paper). We usktwice in the course of the paper. The first time is
to show that the categoricity df in some uncountable cardinal implies that the
class isv-stable which means here thdtrealises only countably many types over
countable elementary submodels. Thstability implies tha#C admits a bounded
rank, which is then used to define an independence relation. We assecond
time to prove the symmetry of the independence relation. Provided we restrict our
attention to types over models, we prove that the independence relation satisfies all
the properties of nonforking: symmetry, extension, transitivity, stationarity. This
allows us to definendependent systenog models andexcellencei.e. K is excel-
lent if there exists a primary model over amydimensional independent system of
countable models. We then prove some of the basic results of excellence, namely
the existence of primary models over other sets. Finally, we present Shelah’s cat-
egoricity theorem. At the end of the paper, we discuss Shelah’s original approach
and compare it with this presentation.

This paper grew out of lecture notes for a class on excellence that | gave
at Oxford University in 2002 during the Michaelmas term. It assumes only basic
model theory, say, up to Morley’s theorem. For expositional purposes, a particular
case of the general result is proved on two occasions, when the main idea is ob-
scured by the additional technicality. We also streamline the text with comparisons
to the relevant theorems of homogeneous model theory to illustrate both the differ-
ences and the limitations of the theorems, but familiarity with homogeneous model
theory is not essential.

0. TYPES ANDw-STABILITY

Fix a complete first order theory/ in a countable languaggé. In this
paper, we consider the claksof atomicmodels ofT', i.e. M € K if and only if
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M E T and for any finite sequeneec M, there exists a formula(z) € L such
thato(z) b tp(c/0, M).

As usual, we work in a large sufficiently saturated matlebf 7 — which
is not in K. Satisfaction is defined with respect Ad. All sets and models are
assumed to be inside/ — soK is the class of atomic elementary submodeld/bf
We use uppercase lettedls B, C for sets,M, N for models, and lowercase letters
a, b, ¢ for finite sequences. We writé B for the union ofA and B and Ac for the
union of A with the range of the sequence

We first make a few observations about the cléss The next remark
shows that(C, <), whereM < N if M is an elementary submodel of, is an
abstract elementary clagsee Grossberg and Lessmann’s paper in this volume for
a definition). The proofs are left to the reader.

Remark 0.1. Let K be the class of atomic models of the countable th&ary

(1) (LS(K) =) If A C M € K, then there exist&' < M, A C N, such
that||N|| = |A| + No. SinceN < M andM € K, thenN € K.

(2) (Tarski-Vaught's chain condition) IfM; : ¢ < «) is an increasing and
continuous elementary chain of models such fhate K for eachi < «,
thenlJ, ., M; € K. FurthermoreM, < U, ., M; and if M; < N € K for
eachi < arthenalsdJ,_,, M; < N.

<o

<o

Recall thatM is A-homogeneous for any elementaryf : M — M of
size less tham\ anda € M there existyy : M — M extendingf such that
a € dom(g). We say thatV/ is homogeneous M is || M ||-homogeneous.

Remark 0.2. (1) Each model ofC is w-homogeneous, and therefore embeds
elementarily any countable atomic set.
(2) There is a unique countable modekin

We now consider the problem of types. As usual, we denotg(by) the
set of completd.-types overA in finitely many variables. In the first order case,
all types are realisable by models of a theory; this is an important consequence of
the compactness theorem. In our context, the situation is a little more delicate; if
AC M e Kandifp € S(A) isrealised inM by, say,, thenAUc is an atomic set.
This gives us aecessargondition for which types are realisable in the models of
our class. We make the following definition:

Definition 0.3. We letS,.(A) be the set of types € S(A) such that for alt: |= p,
the setAc is atomic.

When A is not atomic S, (A) is clearly empty. Also, ifAc is atomic for
somec = p, then Ad is atomic for anyd = p. Furthermore, if(4; : i < «)
is an increasing and continuous sequence of atomic setgpand < «) is an
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increasing and continuous sequence of types, with S,i(A4;) for i < «, then
the typep = U; ., Pi € Sat(Uj<q 4i)-

However, given a (partial) typge over an atomic sefl (indeed, even for
a complete type € S,i(B), whereB is a subset ofl), there may not exisi €
Sat(A) extendingp. This may fail also for countabld.

Another problem is that, in general, there maybe& M € K andp €
Sat(A) not realised in anyV € K. This only occurs founcountabled, though: If
c € M realisep € S,(A), thenAc is atomic by definition. IfA is countable, then
Ac embeds elementarily inside the countable matglof . This embedding
extends inM to an elementary map whose range contdifyis The image ofi/
under the inverse of this map produces an atomic model contaihing follows
that, for countabled, the setS,;(A) corresponds exactly to the set of types ader
realised by models ifC.

The fact that, forA uncountable, some types #3;(A) will be omitted is
unavoidable unless there exists(@A| + X )-homogeneous model i§ of size at
least|A| + No. But, as Shelah showed, there are uncountably categorical atomic
classedC not containing any uncountahlg -homogeneous model. So, outside of
homogeneous model theory, types over general sets are intractable. In this paper,
we will deal essentially with types overodels We make the following hypothesis
throughout the text.

Hypothesis 0.4.There exists a mode& € K of size at leask, for some suitably
large cardinak, with the property that ip € S, (M) andM < € of size less than
R, thenp is realised inZ.

In this paper, ‘suitably large’ means thatis assumed to be at least the
categoricity cardinal, and at least tHanf numbefor atomic classes£ 3,,,). This
latter condition ensures, in particular, thkathas arbitrarily large models. We will
see in subsequent sections t#ias full. The existence of full models follows from
excellence; by introducing them early, we can present the entire theory within ZFC
in a very smooth way. The existence of full models does not imply the existence of
homogeneous models. Notice also that we do not assumalti{amall) models
of K embed in€ (this will follow from excellence); for now, it is enough that all
countable models df embed intaZ, which is a consequence ofhomogeneity.

We now considetv-stability. There are several possible notions der
stability which we discuss below; some are equivalent, some are not.

Definition 0.5. The classK is A-stableif | S, (M)| < A, for eachM € K of
size.

Proposition 0.6. The following conditions are equivalent:

(1) K isw-stable.
(2) ¢ realises only countably many types over countable subsets.
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(3) EachM € K realises only countably many types over countable subsets.

Proof. (3) implies (2) is clear. To see that (2) implies (1), supposeShdt\/) is
uncountable for some countablé € K. By w-homogeneity, we may assume that
M < €, and thust is notw-stable since it realises each typeSin(M). For (1)
implies (3), if M € K realises uncountably many types over a countable subset,
then it realises uncountably many types over a countable submfydel N. Thus

Sat (M) is uncountable, contradicting (1). O

K can bew-stable whileT" is unstable: Consider the countable theory in
the languag€ NV, +, 0, 1}, whereT" has PA on the predicaf¥ and asserts that the
complement of/V is infinite. 7" is unstable since it has the strict order property.
However, the clas&’ of atomic models ofl’ has arbitrarily large homogeneous
models (hence satisfies our hypothesis 0.4), andstable.

Without additional assumptions, thestability of IC does not even imply
that S,;(A) is countable for each countable atoradc although each type <
Sat(A) is realisable inside a model, there may be no model realisimgy all
types inS,¢(A). If we had an uncountable; -homogeneous model, we could do
this (or amalgamation over sets, which is the same); it turns out to be equivalent, as
is shown in the following fact [Le2]. The existence of countable getgth S,;(A)
uncountable is a core difference with the categoricity problem in the homogeneous
case. Itis the basic motivation behind excellence and will be revisited in Section 2.

Fact 0.7(Lessmann) Suppose thei,; (A) is countable for each countable atomic
setA. If K has an uncountable model, th&hhas arbitrarily large homogeneous
models,

Throughout this paper, we will make occasional use of the following fact,
often referred to aMorley’s methods

Fact 0.8. Supposéa; : i < 3,,,) € M € K. LetL* be an expansion af with
Skolem functions and@™ be the theory of is this expansion. Then there exists
an L*-indiscernible sequencg; : i < w) such that for eacm < w we can find
ig < -+ <1, <3, satisfying

tpr(bo, ..., bn/0) = tpr«(aig, - - -, a;,/0).
It follows that the reduct td. of the Skolem Hull ofb; : ¢ < w) is a model of<.
Recall thatC is A-categoricalfor a cardinalX if all models of K of size

A are isomorphicC is alwaysXy-categorical. We now connect categoricity with
w-stability.

Proposition 0.9. If KC is A-categorical for some uncountable thenk is w-stable.



AN INTRODUCTION TO EXCELLENT CLASSES 7

Proof. Suppose thak’ is notw-stable. Ther realises uncountably many types
over a countable subset. By the Downwar@lenheim theorem, we can fidd <

¢ of size realising uncountably many types over a countable subset. On the other
hand, sinceC has arbitrarily large models, we can use Fact 0.8 to find an infinite
L*-indiscernible sequend@; : i < w) inside someN € K. By compactness,

we can extendb; : i < w) to a dense linearly ordereld*-indiscernible sequence

I of size A. By construction, the Skolem Hull df also omits all the nonisolated
types ofT" (a counterexample would otherwise provide oneMjy and hence its
reduct is a model iiC. It is easy to see that this reductdsstable of size\, which
contradicts\-categoricity. O

Shelah’s example to answer Keisler's question negatively shows that un-
countable categoricity does not necessarily imply thatA) is countable for all
countable atomici.

1. RANK AND INDEPENDENCE

From now on, until the rest of the paper, we assume/thitw-stable. In
this section, we introduce a rank. The rank is bounded intistable case, and
equality of ranks provides an independence relation which we show to be well-
behaved over models &f.

Definition 1.1. For any formulag(z) with parameters in/ € C, we define the
rank Rys[¢]. The rankR[¢] will be an ordinal,—1, or oo and we have the usual
ordering—1 < a < oo for any ordinala. We define the relatio®/[¢] > o by
induction ona.

(1) Rao] = 0if ¢ is realised inM;
(2) Ryr[¢] = 9, whend is a limit ordinal, if Ry/[¢] > « for everya < §;
(3) Ra¢] > a+ 1if the following two conditions hold:

(a) Thereiszu € M and a formula)(z, y) such that

Ryp(z) ANp(z,a)] =2 and  Ruf[p(z) A ¢(z,a)] = o;

(b) For everyc € M there is a formula((z, ¢) isolating a complete type
overc such that

Ryrp(x) A x(z,c)] > a.
We write:

Ryr[¢] = —1if ¢ is not realised inV/;
Ry[¢p] = aif Ryl¢] > o butitis not the case thadty[¢] > o + 1;
Ry[¢] = oo if Ryr[¢] > o for every ordinak.

For any set of formulag(z) over A C M, we let

Ry[p] = min{ Rm[¢] | ¢ = Ag,q C p, pfinite }.
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Note that the conditiorR[p] > 0 does not imply thap is realised in a
model of .

We first write down a few properties of the rank. They are all basic and
can be proved easily by induction or directly. (7) follows from (6) and (1) using
the countability of the language.

Lemmal.2. (1) Ru[é(x,b)] depends orp(z,y) andtp(b/0) only.

(2) If pisoverM and N, for M, N € K, thenRy;[p] = Rn|[p].

(3) If pis finite andg is obtained by taking the conjunction of all the formulas
in p, thenR[p] = R[¢].

(4) (Finite Character) For eaclp there is a finite subsetof p such thatR[p] =
R[q].

(5) (Monotonicity) Ifp C ¢, thenR[p] > R]q].

(6) If R[p] = a and 3 < « there isq such thatR[q] = (.

(7) There exists an ordinaly < wy, such that ifR[p] > «y thenR[p] = oo,

In view of (2), we will drop the subscript/. We now show that-stability
implies that the rank is bounded (the converse is Proposition 1.6). The idea of
the proof is essentially like the first order case: we construct of binary tree of
formulas, whose branches give us continuum many types. There is one difference:
to contradictw-stability, we need the types to be (M) for some countable
M € K. To achieve this, we simply choose isolating formulas along the way, and
force the parameters to enumerate a model.

Theorem 1.3. R[p| < oo for every typep.

Proof. We prove the contrapositive. Suppose there is a gfypeer some atomic
model M such thatR[p] = co. We may assume that= {¢(z,b)} is a formula
and also thatV/ is countable by the previous lemma. Lt : i« < w} be an
enumeration of\/.

We construct formulag,, (z, b,), forn € <¥2 such that:

(1) ¢y(x,by) isolates a complete type oviy;
(2) = Vz[bu(2,b,) — éy(x,b,)] wheny < v;
(3) ¢,r0 ande, are contradictory,

(4) Rlgy] = oo;

(5) Qp(n) S b77'

This is possible: The construction is by inductionégn).

For (): SinceR[¢] = oo, in particularR[¢] > wy + 1 so there exist®,,
overbay isolating a complete type ové, such thatR[¢ A ¢,] > w;. The formula
¢y is as required.
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Assume that we have construciggx, b,) with /(1) < w. SinceR|¢,| =
oo, in particularR[¢,] > (w1 + 1) + 1. Hence, there is € M and(z,y) such
that

() RlogAd(@.e) Zwi+1 and Rlgy A-ir.c)] > w + 1.

Letb,o = by1 = cbyagy,)+1- By (*) and the definition of the rank ((3)(b)), there
areg,¢(x, by¢) isolating a complete type oveéy-, for ¢ = 0,1, such that

Ry ANp(z,¢) A drpo(, bypo)] > wi
and

R[¢n A =p(x,c) A (b?fl (z, b?fl)] > w
Theng, ¢(x, b,,) are as required, fot = 0, 1.

This is enough: For each € “2, definep, := |J, ., pyin- Notice that
eachp, determines a complete type ovef with the property thafi/c,, is atomic
for any realisation,, of p,. Hence, each, € S, (M), s0S,: (M) has size contin-
uum, which contradicts the-stability of K. O

Recall thatp € S,;(A) splits overB C A if there existc, d € A realising
the same type oveB and¢(z, y) such thatp(z,c) € p and—¢(z,d) € p. The
next proposition examines the connection between the rank and nonsplitting. It
also shows that we may hagémostone same rank extension over a model.

Proposition 1.4. If p € Sy (M), M € K and ¢(x,b) € p such thatR[p] =
R[¢(z,b)]. Thenp does not split oveb. Furthermorep is the only type ir5,: (M)
extendingp(z, b) with the same rank.

Proof. Suppose that splits overn. Letvy(x,y), ande,d € M such thatp(c/b) =
tp(d/b) andy(x,d) € p and—(x,d) € p. ThenR[¢(z,b) A ¢Y(x,c)] > «,

and R[¢(x,b) A —=p(z,d)] > « by monotonicity. By Lemma 1.2, we also have
R[p(x,b) ANp(x,d)] > a, so (a) of the rank is satisfied at the successor stage. Now
lete € M. By monotonicity,R[p | bc] > «. There exists¢ € p | be isolating

p | be. By monotonicity, R[¢ A x] > «, so (b) of the rank is satisfied at the
successor stage. HenB$¢] > « + 1, a contradiction.

For uniqueness, suppose that: p € S,:(M) extendg(x,b). Suppose
Y(x,c) € ¢ such that-y(z,c) € p. By monotonicity, we haveR[¢(z,b) A
Y(z,c)] > aandR[p(z,b) A —p(z,c)] > «, so (a) of the rank is satisfied. It
is easy to see that (b) of the rank is satisfied the same way as the previous para-
graph O

The proposition shows thatjf € S,;(M) thenp does not split over a finite
set. This is not true fop € S,¢(A) in general.

Proposition 1.5. Letp € S, (M), M € K and let¢(x,b) € p be such that
R[p] = R[¢]. LetC be an atomic set containingy/, then there exists a unique
q € Sat(C) extendingp (and thereforep) such thatR[p] = R[q].
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Proof. Let ¢(x,b) € p such thatR[p] = R[¢]. By the previous propositiom, does
not split overb. Let ¢ be the following set of formulas

{W(z,c) : c € C,(z,y) € L, there exists’ € M realisingtp(c/b)}.

Sincep does not split oveb, this is well-defined. Similarly, this determines a type
q € Sat(C). Itis easy to check that does not split oveb and has the same rank
asp.

For uniqueness, suppose thdy,] = R[¢], for ¢ = 1,2 both containg.
ThenR[q, | M| = R][p] for ¢ = 1,2 be the previous proposition. Then = ¢
since both do not split over. O

We now prove the converse to Theorem 1.3. Together, they form a par-
ticular case of the stability spectrum theoremstability implies A-stability for
all \.

Proposition 1.6. If R[p] < oo for all typesp, thenk is A-stable, for each infinita.

Proof. Let M € K. Letp € S (M) and leté(z,b) € p such thatR[p] =
R[¢(x,b)]. Sincep is the only extension af(z, b) with the same rank, the number
of types inS,¢ (M) is at most the number of formulas ovéf, which is||M||. O

In general, a type may fail to have an extension to a larger set, so in partic-
ular, it may fail to have a same rank extension. This is why we consider stationary

types.

Definition 1.7. We say thatp € S.i(A) is stationaryif there existsb € A,
o(z,b) € p, andM € K containingA with ¢ € S..(M), ¢(x,b) € ¢ and
R[¢(z,b)] = R[p|] = Rlq].

Clearly, complete types over models are stationary. The previous proposi-
tion does not assert that the nonsplitting extension is actually realised in a model
(it is, if we work inside€). It only says that whep € S, (A) is stationary and”
is atomic containingd, there is a unique extension$y.(C) of the same rank. We
will denote this extension by | C.

We now introducdullness a substitute for saturation. Full is called weakly
full'in [Sh 874].

Definition 1.8. A modelM € K is A-full over A C M if for all stationaryp €
Sat(B) with B C M finite, and for allC' C M of size less thar\, M realises

p | ABC. We say thaiVl is A-full if M is A-full over each subset of size less than
A. Finally, we say thaf\/ is full if M is A-full for A = ||M||.

Note that if M is A-full then M realises each € S,(N) for N < M
of size less than\. Also, if M is A-full over A, then it isA-full over B, for any
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B C A. We have the following easy proposition, which is left to the reader. It
shows that® is z-full:

Proposition 1.9. Let M € K be uncountable. The following are equivalent;

(1) M is Afull.
(2) M realises eachpy € S,(N), with N < M of size less than.

We are going to prove Symmetry over models. For this, we will use the
order property which was introduced by Shelah in [Sh 12].

Definition 1.10. We say thaiC has theorder propertyif there exist a modeM €<
K, aformulag(z,y) € Land(d; : i < 3,,) € M such that

M = ¢(d;,d;) ifandonlyif i< j.

In the definition above, it is equivalent to ask for arbitrarily long orders
(use Morley’s methods). It is a familiar theorem in the first order case that the
order property contradicts stability. It holds at this level of generality also — but
it is necessary to have arbitrarily long orders. We present the following particular
case suitable for our purposes.

Proposition 1.11. I does not have the order property.

Proof. Suppose thak’ has the order property. Létl; : i < 3,,) € M € K such
that M |= ¢(d;,d;) if and only if ; < j. By Fact 0.8, there exist®,, : n < w)
L*-indiscernible such that ¢(b,, b,,) if and only if n < m, and furthermore, the
reduct toL of the Skolem Hull of(b,, : n < w) is in K. By compactness, we can
find (b; : @ € R) L*-indiscernible such that any finite subsequence of it satisfies the
sameL*-type as any finite subsequencedf : n < w) of the same length. L&V

be the reduct td of the Skolem Hull of(b; : i € R). By constructionV € IC (it

is a model ofl" and must be atomic since a counterexample can be used to provide
a counterexample in/). FurthermoreV = ¢(b;, b;) if and only ifi < j. Letting

B = Uie@ b; gives us a countable subsetdfover which2® types are realised

by density ofQQ. This contradicts the-stability of IC (Proposition 0.6). (]

We can now prove the symmetry property of the rank.

Proposition 1.12. (Symmetry) Let, c and M € K be such thatM ac is atomic.
ThenR[tp(a/Mc)] = R[tp(a/M)] if and only if R[tp(c/Ma)] = R[tp(c/M)].

Proof. Notice that by Finite Character and Monotonicity, we may assumelthat

is countable, and so hy-homogeneity off, we may assume that c and M are
inside €. Suppose the conclusion of the proposition fails; we will contradict the
w-stability of IC by showing that it has the order property. We can choose a formula
¥ (x,y) over M such that

Rltp(a/Mc)] = Rl{(z, )] = Rltp(a/M)]
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while
Rltp(c/Ma)] = R[¢(a,y)] < R[tp(c/M)].

Define(a;,¢; : i < 3y,) € €andB; = M U{aj,c; : j < i} such that

(1) ¢; € €realisesp(c/M) andR[tp(c;/B;)] = Rltp(c/M)],
(2) a; € N realisesp(a/M) andR[tp(a;/Bic;) = R[tp(a/M)].

This is possible since botip(a/M) andtp(c/M) are stationary and thus the real-
isationsa; andc; in (1) and (2) of the unique nonsplitting extensions of these types
exist by fullness of.

This implies the order property: Suppose that j. Thena; € B;. If

= W(aj,ci), thenRltp(c;/Bi)] < R[¢(ai,y)] = Rlp(a,y)] < Rltp(ci/Bi)]
contradicting (1) (we used the fact thagi(a;/M) = tp(a/M) to see that the
middle equality holds). Hende: —(a;, ¢;) if i > j.

Now if ¢ < j, then we havep(a;/Mc) = tp(a/Mc), by uniqueness of
same rank extensions, $01(a;, c). Sincetp(a;/Bjc;) does not split oveB by
(2) andtp(c/M) = tp(c; /M), we must have= 1 (a;, ¢;).

Thus,é(z1, x2;y1,y2) = ¥(x1,y2) andd; := ¢;a;, fori < 3, witness
the order property. O

We can now define a natural independence relation using the rank: For
A, B, C such thatd U B U C is atomic, we write

AJB,C' if R[tp(a/BC)] = R[tp(a/B)], foralla € A.

We will say thatA is freefrom C over B if A L C. We now gather the properties

B
we have established for this dependence relation. The reader used to the first order
case may wonder whether (6) and (8) hold with sets instead of models. The answer
is no in general.

Proposition 1.13. AssumeAd, B, C, D are sets whose union is atomic.

(1) (Invariance) Iff is an elementary map, then

AL C ifandonlyif f(A) L f(C).
B f(B

(2) (Monotonicity) If A’ C AandC’ C Cu BandA L C,thenA’ L C'.
B

B
(3) (Finite Character)

ALC ifandonlyif A" L,
B B

for each finiteA’ C A and finiteC’ C C.
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(4) (Transitivity) If B C C' C D, then
ALC and AL D ifandonlyif AL D.
B C B

(5) (Local Character) Ifa U C'is atomic, then there exists a finige C C such
thata L C.

B
(6) (Extension over models) LetU M be atomic,M € K andC be atomic
containingA. Then there exists’ realisingtp(a/M) such that’ U C'is
atomic andd’ L C.

M
(7) (Stationarity over models) Suppose thatrealisestp(a/M), a; U C'is
atomic, andz, L C for £ = 1,2. Thentp(a;/C) = tp(az/M).

M
(8) (Symmetry over models)#f U C U M is atomic, then
AL C ifandonlyif C L A.
M M

In the sequel, we will use these properties extensively; on occasions, we
will simply say ‘by independence calculus’ when establishing the independence of
certain sets from others by using a sequence of these properties.

2. GOOD SETS PRIMARY, AND FULL MODELS

Recall thatC is w-stable. In order to define excellence, we will also need
primary models.

Definition 2.1. We say that\/ € K is primary overA, if M = AU {a; : i < a},
and for eachi < « the typetp(a; /AU {a; : j < i}) is isolated.

The sequencés; : i < «) is referred to as aonstructionof M over A. It
is a standard fact that #/ € K is primary overA then for eacle € M, the type
tp(c/A) is isolated. IfM is primary overA, then it is easy to see that it is prime
over A. Recall that a modelf € K is prime overA, if for eachN € K containing
A, there is an elementary mgp: M — N which is the identity orA.

The main tool for producing primary models over countable sets is the
following corollary to Henkin’s omitting type theorem:

Fact 2.2. Let T be a countable theory. Assume that for each consistent formula
¢(x) there exists a complete type over the empty set contaifmyy which is
isolated. Then there exists a countable atomic mod#l. of

This leads to the next definition, important mostly for countable sets.

Definition 2.3. An atomic setA is goodif for each ¢(x,a) with a € A and
= Jz¢(z,a), there is a complete type € Sai(A) containinge(x, a) which is
isolated.
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The next lemma is the motivation behind the definition of good sets.

Lemma 2.4. Let A be countable and atomic. K is good, then there is a primary
model overA.

Proof. Form the theoryl’4 by expandindl” with countably many constants for the
elements ofd. The assumptions of the previous fact are satisfied fosinceA is
good, so there exists a countable atomic mddél ) for T4. It is easy to see that
the reduct ofM/(A) to the original language is a primary model over O

We will find several equivalent properties for good sets in a few more lem-
mas culminating in Corollary 2.8.

Lemma 2.5. Let A be a countable atomic set. $,;(A) is countable, them is
good.

Proof. SupposeA is not good: Then there exist§(x,a) with a € A and =
Jzé(z,a), but no isolated extension @f(x, a) exists inS,;(A). Thus, for each
(x,b) with b € A with E Va(¢(z,b) — ¢(z,a)), there ist’ € A such that
¥ (z,b) has at least two extensionsSg, (abb’). We will use this to contradict the
countability ofS,;(A), in a similar way to the proof of boundedness of the rank.

Let A = {a; : i < w}. We construct),(z,b,) for n € <“2 such that
W}(% b()) = ¢($7 a), if n < Vthen’: Vx(¢n($, bn) - ¢V(x7 bV))’ eaChwn(:Ev bn)
isolates a complete type oviy, b, containsa; if £(n) > i, andi,o(x, byo) and
Y1 (2, by ) are contradictory. This is possible and implies that(A) has size
continuum. O

Lemma 2.6. If M € K is countable and/c is atomic, them\/ ¢ is good.

Proof. For eachtp(d/Mec) € Sui(Mc), considettp(de/M) € S (M). Itis easy
to see that this induces an injection frém (M c) into S, (M). HenceS,(Mec) is
countable, sinc8,; (M) is countable by-stability of . Hence,M cis good. O

We now consider the dual notion to prime models. We say aha uni-
versal over4, if A C N, and forM € K with A C M and||M| = ||N||, there
exists an elementary map: M — N which is the identity orA.

Lemma 2.7. If M € K is countable, then there exists a countable universal model
N € KoverM.

Proof. Let (M,, : n < w) be an increasing sequence of countable models such that
My = M andM,,; realises all types if8,;()M,,). We could do this at once using

¢, but€ is not necessary here: Lép; : i < w} be an enumeration &, (M,,).

Let ag realisepy (which exists sincél/; is countable) and let/; be primary over
M,ao, Which exists by the three previous lemmas. Sipcés stationary, there
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exists a unique free extensign over M. Leta, realiseq;. Let M| be primary
over M a;. Continue like this inductively. Led,,; =, M.

<w )

Let N = |, ., M,. We claim thatV is universal ovefM. Let M’ € K
be countable such thatl < M’. Write M' = {a; : i < w}. We construct an
increasing sequence of elementary maps

fi: M U{aog,...,a;} — N,

which is the identity on\/ for i < w. This is enough akJ, _, f; is an elementary
map sending\/’ into NV, which is the identity onl/.

Let us now construct thgs. Fori = 0, letby realisetp(ag/M) € Sat (M)
which exists inN by construction, and lefy be the partial elementary map from
Maq which is the identity on\/ and sends to by. Having constructed;, let M *
be a primary model over/ U {ay, . . ., a;} which exists, sincé/ U {ay, ..., a;} is
good. There exist8 < w such thaty, ..., a; € M. By definition, we can extend
fito f : M* — My, which is the identity or\/. Then the image ofp(a;41/M™)
under f can be extended to a type #. (M) (by stationarity), which is then
realised by some elemebyt,; of My, ,. Let f;;1 be the partial elementary map
extendingf; and sendin@; ;1 to b; 1. This finishes the construction. O

So, we finally have:

Corollary 2.8. Let A be a countable atomic set. The following conditions are
equivalent:

(1) Ais good.

(2) There is a primary model ovet.

(3) There is a countable universal model ovér
(4) Sat(A) is countable.

Proof. We showed (1) implies (2) and (4) implies (1). For (2) implies (3): Lét
be primary overA. By the previous lemma there existsuniversal overV/. This
implies immediately thaiV is universal overd. (3) implies (4) is clear: LelV be
universal overd. Eachp € S, (A) is realised in some countable modé},, which
embeds inV over A by universality of N. Hence, each € S,;(A) is realised in
N 50| S (A)] < |V O

Unless we are in the homogeneous case, there are countable atomic sets
A such thatS, (A) is uncountable, so some sets are good and others are not. The
next remark follows by counting types.

Remark 2.9. Let A be countable and good. Letealisep € S,;(A). ThenAcis
good.
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We pointed out in a previous section that a type S,:(A) may fail to
have an extension ifi,; (M) whereM containsA; this only happens whed is
not good. In fact, it follows easily from the next lemma andtability of C that
a countable sefl is good if and only if each type ifi,;(A) extends to a type over
M for any M containingA.

Lemma 2.10. Let A be atomic. LetB C A be a countable good set. Lpte
Sat(B). Then there ig € S, (A) extending.

Proof. Let M be a primary model oveB. Letc = p and letM’ be a primary
model overBc (which exists by the previous remark). Without loss of generality
M < M'. Hencetp(c/M) € S,:(M) is an extension op. Defineq € S,(A)
extendingp, usingtp(c/M), just as in the proof of Proposition 1.5. O

We finish this section with the problem of existence and uniqueness of
countable full models over countable sets.

Proposition 2.11. Let A be countable and atomic. Then there exists a countable
M € K which is full overA.

Proof. Let M, be any countable model containity Let M,,,1 be countable
realising each type i68,,(M,). LetN = |J, ., M,. ThenN € K is countable
and containsd. We claim that/V is full over A. Letp € S,i(Ac) be the unique
free extension of a stationary typeSg(c). There isn < w such that € M, so
Ac C M,. There is a unique free extensionyoin S, (M), and this extension is
realised inM,,4 1, hence inV. O

For unigueness4 needs to be good.

Proposition 2.12. Suppose thatl is good and countable. Suppose thdtand
N € K are countable and full oveA. ThenM is isomorphic taV over A.

Proof. Let M = AU {a; : i <w}andN = AU {b; : i < w}. We construct an
increasing and continuous sequence of partial elementary fpagd — N such
thatdom(fi) = A;, ran(fi) =B, fi A = idy anda; € As; andb; € Boii1,
A;B; \ Ais finite.

This is clearly enough. Let us see that this is possible. We first congtruct
SinceA is good, there is a primary mod&l’ over A. Without loss of generality
M’ < M. There is an elementary magp: M’ — N, which is the identity on
A. Consider the stationary type(ao/M’). It is the unique free extension of the
stationary typep = tp(ag/Ac) for somec € M’. The image ofp under f is
realised inV by someb, by fullness ofN, andtp(ag/A) = tp(b/A). Let f, be the
map extendindd 4 sendingag to b.
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Let M" be primary overdb (M" exists sinced is good andAb is atomic).
There existsy : M” — M extending the inverse ofy. The stationary type
tp(bo/M") is the unique extension of someec S, (Abd), with d € M”. The
image ofq underyg is realised inM by fullness of M over A, so the mapf; ex-
tending fy sending a realisation @f(q) to b is elementary.

Now assume thafy; 1 has been constructed. Thdn, ; \ A is finite, so
As; 11 is a good set containing. Hence, there is a primary mod&l’ containing
Agit1. The typetp(a;+1/M’) is stationary and is the unique free extension of a
typep = tp(a;+1/A2+1¢) for somec € M'. Thereisf : M’ — N extending
f2ir1. The image op underf is realised inV, which allows us to fingfy; o with
domainAs; 11 U a1, extendingfo; 1. The construction of;, 3 is similar. [

3. INDEPENDENT SYSTEMS EXCELLENCE, AND CATEGORICITY THEOREM

To motivate the definition of excellence, let us consider the problem of
existence and uniqueness of uncountable full models. For full models oRsize
over a countable (good) set, it is still manageable. For existence: simply itgrate
times the construction of Proposition 2.11 (or, under our assumption, to consider
an appropriate submodel d@). For uniqueness: To show th&f, N € K of size
Ny, full over the good countable set, are isomorphic, choos@\/; : i < wy),
and(N; : i < wy) increasing and continuous chain of countable models such that
Ui@1 M; = M and Ui<w1 N; = N, with My and Ny primary overA, M,
full over M; and N, full over N;. The isomorphism betweel and NV is then
defined inductively by using Proposition 2.12.

However, to prove the existence or uniqueness of uncountable full models
over larger sets (for example over a model of 2¥z¢, or to prove the existence
and uniqueness of full models of size at ledgtis more problematic. The key
ingredient in both proofs is the existence of a primary model é¥er whereM €
K countable and/a is atomic. We have not proved this féf € X uncountable.
Here is a possible strategy to prove this fdrof size, sayN;:

Choose(M; : i < wq) a resolution ofA/. There exists a primary model
Ny over Mya, since Mya is good. Suppos&Vy U M, is atomic and good. Then
we could findVy primary overNy U M. Inductively, if N; U M;, 1 is atomic and
good for each < wi, then we could continue this process, and by taking unions
at limit, obtain an increasing and continuous chain of mo@als: i < w;) such
that V;y; is primary overN; U M, ;. The hope is then that, by pasting together
the constructions, one could show thagt_, N; is primary overMa. To help us
carry out this construction, we will use independence. First chdggeountable
such that, in additiory is free fromM over M,; this, we will see, ensures that the
primary modelNy is free fromM over My and Ny U M is atomic. Inductively,
assume thaw; is free fromM over M; andN; U M is atomic. Then, iftV; U M; 4
is good, we can finaV; 1 primary overN; U M, such that, in additionV;; is
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free fromM over N;,1 andN; 1 U M is atomic. Taking unions at limit allows us

to constructV = J,,, IV: (providedN; U M; 1 is good at each stage), and now,

it is easy to see thayY is primary overM a. Thus, the problem of finding a primary
model overMa is reduced to finding primary models over countable sets of the
form M7 U Msy, wherelM is free fromM, over M, andM; U Ms is atomic. The

gain is that the models involved are countable; the cost is that we have to consider
2-dimensional (independent) system§: ; completes a square whose vertices are
M;, M;+1, andN; and edges given by the relatien

Now considetM a, with M € I with M a atomic, but this time with\/ of
sizeN,. Using the same idea leads us to ask about the existence of primary models
over the atomic sedd; U Msy, whereMy, M1, My € K, My < My, My, My is
free from M, over My, and M, has sizeX; for £ = 0,1, 2, i.e. an independent
2-dimensional system of models of size. We can repeat the same procedure to
analyse this 2-dimensional system. Write a resolutitff : i < w;) of countable
models for each\l,, £ = 0,1,2. We can try to construct the primary model over
M; U M as the union of an increasing and continuous chain of mddéls i <
wi) such thatV is primary overM{ U My, andN;, , primary overM; T U ML U
N;. To carry this out, we need to ensure that the countable\ggts U M2 U N,
are atomic and good at each stage w;; here again independence will play an
important part. In all, the gain is that the models are now countable, but the cost is
that we have to consider 3-dimensional systefis:; completes the cube whose
7 other vertices aréV;, Mj, M}, Mg, and M+, My, and M, again edges
are given by<. We formalise these ideas next.

We consider the following partial ordé?~ (n) := P(n) \ n with respect
to inclusion. We writes C ¢, if s is a strict subset of, SOP~(n) = {s: s C n},
wheren = {0,1,...,n —1}. Then,P~(0) is empty,P~ (1) is a point,P~(2) is a
square without one of its verticeB,” (3) is a cube without one its vertices, and so
forth.

Definition 3.1. An independent), n)-systenis a collection of models
(Mg :sCn)
such that
(1) EachM; € K has size\.
(2) Mg < M, if s C t.
(3) The setd, = |J,,, M; is atomic.
(4) Foreachs, M, .l B, whereB; = Ut¢s M;.

S

We will omit the parameters when they are either obvious or not important.

The next definition is not formally made in [Sh 87b]. Also, in [Sh 87D],
(A, n)-existence refers to a different property.
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Definition 3.2. We say thatC has(\, n)-existencef there exists a primary model
overlJ,. ., My, for each(\, n)-independent systefd/, : s C n).

sCn

Thus, in this paper(Ry, n)-existence is equivalent to the requirement that
Uscn Ms is goodfor any independentXy, n)-system. The next definition is the
main definition of this paper.

Definition 3.3. K is excellentf K has(X,, n)-existence, for each < w.

We will now show how the existence of primary models over some (count-
able) sets implies the existence of primary models over other sets. If we had pri-
mary models oveall countableatomic sets, then we would have them over all
atomic sets [Le2].

Fact 3.4(Lessmann) Assume thaiC is w-stable and has an uncountable model.
The following are equivalent:

(1) There is a primary model over each countable atomic set.
(2) There is a primary model over each atomic set.
(3) There are arbitrarily large homogeneous models.

In our case, the situation is a bit more delicate. We now prove a lemma,
which we refer to aslominance

Lemma 3.5. Suppose thatl .. B, whereM € K and ABM is an atomic set.
M
Suppose that/(A) is primary overM A. ThenM (A) L B.
M

Proof. By finite character of independence, it is enough to show thigifand B
finite. Write A = ¢ andB = b. It is also enough to show thattifi(c/Ma) is iso-
lated andz L b, thenc L ab. But this is clear sincep(c/Ma) isolatestp(c/Mab)

M M
(asM is a model). O
We now formalise the proof discussed at the beginning of this section with
two theorems. The first shows that the existence of primary models over sets of the

form Ma does indeed follow from the existence of primary models over indepen-
dent2-dimensional systems of models of smaller size.

Theorem 3.6. Suppose thaiC has (i, 2)-existence, for eaclh < A. Then, if
M € K has size\ and M a is atomic, there exists a primary model ovéia.
Proof. Let B be a finite subset a#/ such thai: . M. Choose an increasing and

B
continuous sequence of modé€ld/; : i« < \), such thatM; € K, B C M;,
| M;]| < |i] 4+ Ro, andJ; .\ M; = M.
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Now construct an increasing and continuous sequence of models
(N,L 1< )\)

such thatN; L M, N; U M is atomic, Ny is primary overMya, and N;;1 is
M;
primary overN; U M;,.

For: = 0, a primary modelN, over Mya exists, sincelly is countable

(and soMya is good). By independence calculus, we may assumelMthatVy is

atomic andV, L. M. Hence(My, Ny, M;) form an independerityy, 2)-system.
M,

0
Inductively, notice thatM;, N;, M, 1) forms an independeitti| + Ry, 2)-system.

By (|i| + N, 2)-existence, there exist¥;; primary overM, . ; U N;. By in-
duction hypothesis and monotonicify; . M, soN; U M;,1 L M. Thus

M; iy M
N;+1 L M by dominance. At limits, take the union and notice that the inde-
M
pendence and atomicity follows by finite character of these notions.

Let N = [J,., IVi. Then, by pasting the constructions together and using
independence, it is not difficult to see thtis primary overM a. O

The next theorem states that the same principle extends to larger dimen-
sions.

Theorem 3.7. Let A be an infinite cardinal anah < w. Suppose that has(u,n)
and(u,n + 1)-existence, for each < A. Thenk has(\, n)-existence.

Proof. We prove the particular case whenr= 2. SupposeVly < My, for{ =1,2
forms an independerid\, 2)-system.

Choose an increasing and continuous sequefieés: i < \) of models
of K such that| M| < |i| + R, for £ = 0,1, 2, with | J;_+ M} = M, and
*) M L My and Mi L M.

Mg Mg
This is done as follows: Enumerafe, = {a} : i < A}, for ¢ = 0,1,2. For
i a limit, define)M} by continuity. Fori = 0 or a successor, having chosgfy
containinga}, choosel/¢ containingaj) of size|i| + Xy such thatV L M, for
Mg
¢ =1,2. Then, we obtain (*) by transitivity, sinckl;, L Ms.
My
Now construct an increasing and continuous sequence of models
(NZ 1< )\)

such that:
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(1) Ny is primary overM U M?,

(2) N; M7 U M, is atomic, ' )

(3) Niy1 is primary overMi ™ U Mitt U N,
@) N; =, Nj, fori alimit.

This is possible: Foi = 0, we use(Ry, 2)-existence (atomicity is obtained by
extension). At successor stageve use(|i| + N, 3)-existence after checking that
(M}, M, N; : £ = 0,1,2) forms an independeiti| + Ro, 3)-system (use inde-
pendence calculus and dominance, just as the previous theorem). At limit stages,
we definelV; by continuity (again, atomicity is preserved and so is independence).

This is enough, atJ,_, N; is primary overM; U M, (pasting the con-
structions and using independence). O

We now show two theorems showing that excellence implies the existence
of primary models also over uncountable sets (this can be further extended to other
systems of models [GrHa]).

Theorem 3.8. Suppose thak’ is excellent. TheniC has (), n)-existence for all
n < w and for all cardinalsA.

Proof. We prove this by induction on for all n < w. For A = Xy, this is the
definition of excellence. Assume now that> X, and that(u, n)-existence holds
for eachy < X and for alln < w. Then (A, n)-existence follows from Theo-
rem 3.7. O

We can finally prove:

Theorem 3.9. Suppose thak’ is excellent. Then for any/ € K anda such that
Ma is atomic, there exists a primary model ovéa.

Proof. By Theorems 3.6 and 3.8. O

The previous theorem was the key idea behind extending the proof of the
existence of full models to higher cardinalities. Before doing this, we prove a
lemma.

Lemma 3.10. Assume thak is excellent. Suppose th@/; : i < \) is an increas-
ing and continuous chain of modelsfi p € S(C) is stationary withC' C My,
and for eachi < A, a; € M;y1 \ M; and the typep(a;/M;) is the unique free
extension op. Let/ = (a; : i < ). Then

(1) Iisindiscernible ovei\/,.
(2) Foreachb € M,, there is afinite sef C I such thatl \ J is indiscernible
overb.



22 OLIVIER LESSMANN

Proof. Indiscernibility over)M is clear. Let us prove (2). Constru@V; : i < \)
increasing and continuous such thgt< M; and NV, is countable and atomic, and
N1 is primary overN; U a;. This is possible by excellence. Ladt=J,_, N; <
M. ThenN is primary overNy U {a; : i < A}.

<A

Letb € M,. Then there i € N andi; < ...4, < X such that
tp(b/N) does not split over. Now tp(c/No{a; : ¢ < A}) is isolated by a for-
mula¢(z, d, ai,, ..., a;,), whered € No andi; < -+ < i, < A.

We claim that/ \ {a;,, ..., a;, } isindiscernible oveb. Leta,a’ two finite
subsequences df\ {a;,,...,a;, } of the same length. Notice that

tp(a/dai,,...,a;, ) =tp(@/dai,...,a;),

sinced € Ny and! is indiscernible oveNy. Sincetp(c/N) is isolated over

dai,,...,a;, , then necessarilyp(a/c) = tp(a’/c). By nonsplitting, it follows
thattp(ab/0) = tp(a’b/0). This shows thaf \ {ai,,...,a;,} is indiscernible
overb. g

In general, indiscernible sequences in an excellent class cannot be ex-
tended; however those obtained as above can. This gives us a way of extracting
an extensible indiscernible sequence from any uncountable set (see the proof of
categoricity for more details). We can now construct full models directly. The next
theorem is much stronger than our Hypothesis 0.4. There we assumed the exis-
tence ofsomesuitably large full model; here we show treaterymodel extends to
a full model.

Theorem 3.11.Suppose thaf is excellent. Lef\/ € K. Then there is a full model
N over M of size) for any > || M.

Proof. Let M € K be given and lef > ||M||. We construct an increasing and
continuous sequence of modéld; : i < \) such thatMy = M, || M;|| = |i|+ Ro,
and)M, ., realises all types i8,¢(M;). This is done as in the countable case using
excellence: Having constructed; of size at most\, by w-stability, S, (M;) =

{p;j : 7 < A} (sinceK is A-stable by Proposition 1.6). Construct an increasing and
continuous sequence of mod@lf, such thatV/] , ; is primary overMja;, anda;
realises the unique free extensionpgfoverM]’.. This is possible by stationarity
of eachp; and the fact that a primary model exists over each set of the fdim
whereq realises a type i, (M).

Let M = |, M;. We claim thatM/ is full. Letp € S(C) with C € M
of size less than\, be stationary. Let € C, such thatp does not split over.
Without loss of generality, we may assume that M. Let] = {a; : i < A}
be such that;, € M, realisesp [ M;. Thea;s exist by construction. Now, if
a; = a; fori < j, thenp is realised by:;. Otherwise/ has size\. By the previous
fact, I is an indiscernible sequence and there exists I of size less than, such
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that7 \ J is indiscernible over’. Thus, each element df\ J realisesp, sop is
realised in}M. O

We now consider the problem of uniqueness of full models. Similarly
to the previous theorem, we could prove uniqueness of full models like Proposi-
tion 2.12 by using Theorem 3.9. Instead, we illustrate again this idea of decompos-
ing a certain problem into a larger dimensional problem involving smaller models.
For this, we defindull independent systems. We could have used this idea to con-
struct full models also.

Definition 3.12. A (A, n)-independent system is calleddl (\,n)-independent
system ifM; is full over A, for eachs C n.

Definition 3.13. We say thaiC satisfieq A, n)-uniquenessf there is a unique full
model overA4,,, for any full (A, n)-independent syste@/; : s C n).

Lemma 3.14. If K is excellent, theiC satisfies R, n)-uniqueness, for alb < w.

Proof. By excellence, the s&t), -, M, is good, for any(Ry, n)-independent sys-
tem(M; : s C n). There is a full model over it, and by Proposition 2.12, the full
model over it is unique. O

Proposition 3.15. Assume thafC is excellent. IfiC has (u,n) and (u,n + 1)-
uniqueness, for each < A, thenC has(\, n)-uniqueness.

Proof. We prove this fom = 1. Suppose that/, is full over M, for £ = 1,2 and
M, € K have size\, and M, is full. We must show thad/; is isomorphic toMs
over Mj.

We construct three increasing and continuous chains of models
(M} =i < \),

with || M} ]| < |i| + No, such that\, = |J,_, M;, for £ = 0,1, 2 and the following
conditions hold:

(1) M is full over M¢;
(2) M is full over M¢ for £ = 1,2;
(3) Mt is full over M} U ML,
(4) Mt u Mt is atomic, ford = 1,2;
(5) M L ML fore =1,2.
Mz'
0

This is possible: Foi = 0, to reconcile (1) and (2) with (5), we construMlP
for ¢ = 0,1, 2 by takingw-chains of models. Choosing first the approximation to
M)"™ < M, which are full overM,™" " (for £ = 1,2, and thenM" ™" < M, so

M)™ L MyandM;"*"isfull. The resulting union has the desired property.

My
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For i a limit ordinal we define everything by continuity. The successor stage is
similar to the base case, with chains of lenjgth-X (see the proof of the existence
of full models for details).

This is enough: Notice that bix ), 2)-uniqueness, the modal; ! is
the unique full model oveds; U Mt (for ¢ = 1,2), as the relevant systems
are full. We can therefore construct an increasing and continuous sequence of
isomorphismsf; : M! — M4, which are the identity od/{, inductively. The
union is the required isomorphism betwekh and M- over M.

Fori = 0, by (o, 1)-uniqueness, since bofi? and A1y are full overh,
there is an isomorphisify from MY to M3, which is the identity on\/{. At limit
stages, we defing by continuity.

At successor stage, assume tlfiahas been constructed. Letbe an el-
ementary map extendinfj, whose domain containM{'“, which is the identity
on M. This is possible sincés] L Mj*'. Now g(M{™') and M;*' are

M
both full over MiT U Mj. Hence, by(Ji + 1| + Ry, 2)-uniquenessy(M; ) and
M are isomorphic oveds, ™ U M3. This isomorphism yields an isomorphism
fir1 s Mt — M extendingf; which is the identity on/i . O

The next theorem now follows by induction onfor all n < w, using
Lemma 3.14 and Proposition 3.15 just like in the proof of Theorem 3.8.

Theorem 3.16. Suppose thak is excellent. TherlC has the(\, n)-uniqueness
property for all cardinals), andn < w.

The next corollary is simply\, 0)-uniqueness:

Corollary 3.17. For each cardinal\, there is a unique full modéll € K of sizeA.

At this point, it may be helpful to examine our Hypothesis again. We have
now shown that® functions as a monster model; by uniqueness of full models the
class of (small) models d€ corresponds exactly to the class of (small) elementary
submodels of. Notice, however, that, in Section 1 and 2, we have only used its
w-homogeneity.

We can now present Shelah’s proof of categoricity (for a Baldwin-Lachlan
style proof, see [Le3]). The strategy is as follows: There exists a full model in
every cardinality, so the model in the categoricity cardinal is full. Any two full
models of the same size are isomorphic, so if categoricity fails in some cardinal,
there exists a non full model in that cardinality, which we use to construct a non
full model in the categoricity cardinal, a contradiction.

Theorem 3.18. Let K be excellent. Suppose th#tis A-categorical for some
uncountable\. Thenk is u-categorical for all uncountable.
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Proof. We proved that there is a unique full model up to isomorphism in each
cardinal (Theorem 3.11 and Corollary 3.16).

Assume, for a contradiction, thatis the first uncountable cardinal such
thatC is not u-categorical. Thus, there exist$ € K of sizeu, which is not full.
Then, there is a stationagyc S,:(c) for a finitec € M, andA C M of sizex less
thany, such that the unique free extensipre S,.(A) extendingp is not realised
in M.

Construct an increasing and continuous sequence of models
(M; i< k™),

such thatd C My, M; < M, M 75 M;. Chooseaz; € M \ M; andb; € M;
such thattp(a;/M;) does not split oveb;, for i < x*. By Fodor's lemma, we
may assume that eadh € M,. Furthermore, by-stability, we may assume that
tp(a; /M) is constant for ali < ™. Finally, by the pigeonhole principle, we may
assume thatt; = b € My foralli < xT.

We have therefore a typec S,;(b) and(a; : i < k) such thatp(a;/M;)
extends- and does not split ovér. In particular,(a; : i < ™) is an indiscernible
sequence.

We can now construct an increasing chain of countable models
(Np:n <w)

such thabe € Ny, N,, < M, a, € Nn11 \ N, realises the nonsplitting extension
of r in S,¢(V,,). We can further choos®’,, so N,, does not realise the typg =
q [ AN Ny.

We will construct a modeNV,, of size \ (the categoricity cardinal) which
omitsg*. Sinceq* is the unique free extension of the stationary typand soN,
is not full, contradicting categoricity in.

In order to do this, we continugV,, : n < w) to obtain an increasing
and continuous sequen¢®; : i < \) of models such that; € N;; realises the
unique nonsplitting extension efin S,¢(/V;) and N, is primary overN;a;, for
1 > w. This is possible by excellence, as there is a primary model Byer. Let
Ny = U, Ni. ThenN, has size\ and is constructible ove¥,, U {a; : i < A}.

Supposel € N, realisesg*. The typetp(d/N U{a; : i < A\}) | ¢%,
and is isolated ovet U a;, ... a;,,, Witha € Ny andn +1 < i3 < ... .0y < A
By indiscernibility of (a; : n < i < \) over N,,, we may assume that < --- <
im < w. Henceg* is realised inV,, 1, a contradiction. O

3.1. Shelah’s original approach. In the last part of this paper, we discuss She-
lah’s original approach in [Sh 48], [Sh 87a], and [Sh 87D].
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A good notion of independence, defined usingtability, is the main pre-
requisite before formalising excellence. In [Sh 48], Shelah obtais&bility from
the set-theoretic assumption that= L and the model-theoretic assumption tkat
is categorical ik. He does this by proving the amalgamation property over count-
able models. In [Sh 87a], he weakens the set-theoretic assumptidn to 281,
and the model-theoretic assumption to having fewer iamonisomorphic mod-
els of sizeX; in K. Our hypothesis on the existence ®fis the substitute for
amalgamation over countable models; it allows us to ohtastability from un-
countable categoricity, within ZFC, using Ehrenfeucht-Mostowski models.

In establishing that the rank induces a good independence relation, in par-
ticular for symmetry, Shelah [Sh 48] uses a many models argument to cortruct
nonisomorphic models of si2g from thew,-order property (which follows from
the failure of symmetry without any extra assumption). Here, wedutseextend
the construction from they;-order property to thdona fideorder property, and
we use it to contradiab-stability. Once these two ingredients are established, the
structure part stays within ZFC and uses no further model-theoretic assumption.

For the theory of excellengeer se the reader noticed that we proved only
the case: = 2 of Theorem 3.7 (this is the only hole, as we pointed out, Proposi-
tion 3.15 is for illustrative purposes only and is not needed in proving the unique-
ness of full models). To prove this for generalShelah uses the reflection prin-
ciple to give a uniform method to obtain a resolution &f A, n + 1)-independent
systems whose union is any givéh, n)-independent system. Checking that all
the requirements are satisfied is then done by induction, using, among other things,
the generalised symmetry lemmahis lemma states that in order to check that a
system of models is independent, it is enough to check that it is independent with
respect to some enumeration (preserving the ardett is a generalisation of the
idea that to check the independence of a sequence over a set, it is enough to check
that each new element in the sequence is independent from the previous elements
over the set.

In this paper, we did not address how excellence is obtained from, say,
categoricity. In [Sh 87b], Shelah shows t(iag, n+1)-existence fon < k follows
from the assumptions thatis categorical irR,, and for each < n < k (assuming
that the2®»’s form a strictly increasing sequence). This is done by defining a strong
negation of thé®, n)-uniqueness property implying the failure of categoricity in
N,,+1. Hart and Shelah also showed tliag, n)-existence does not implyRy, n +
1)-existence, and that categoricity may faikat, ;, while holding forX,,, n < k.
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