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ABSTRACT. In this paper, we present Shelah’s theory of excellence concluding
with his categoricity theorem for the class of atomic models of a countable first
order theory, under the assumption that there exists a large full model. This
allows us to do the entire work within ZFC and without any assumption on the
number of models of sizeℵ1, in contrast to Shelah’s original treatment.

INTRODUCTION

The problem of categoricity has had a major influence on the development
of model theory. A class iscategorical in some cardinalλ if all the models of the
class of sizeλ are isomorphic; the problem of categoricity is whether categoricity
in some cardinals implies categoricity in others. In the first order case, Morley’s
solution to Łos conjecture [Mo], and Shelah’s generalisation to uncountable lan-
guages [Sh 70] constitute the beginning of classification theory culminating in She-
lah’s Main Gap [Sh a], while Baldwin-Lachlan’s solution [BaLa] laid the ground
for geometric stability theory.

Categoricity for classes which are not first order is a considerably more
complicated problem. It is a very active area with many partial results (see [Ke],
[Sh 3], [KoSh], [MaSh], [Sh 48], [Sh 87a], and [Sh 87b], [Sh 88], [Sh 394], [ShVi],
[Sh 576], [Sh 600], [Sh 705] to name but a few). Shelah views it as the most im-
portant problem in model theory and lists it first in [Sh 666]. He conjectures that,
if the classK of models of a sentence inLω1,ω is categorical in some large enough
cardinal, then it must be categorical in all large enough cardinals.

Historically, excellence arose after this conjecture was verified under the
assumption that the classK contains sufficiently homogeneous models [Ke], [Sh 3].
This marked the beginning of classification forhomogeneous model theory, as this
context is now known. We have good notions of stability [Sh 3], [Sh 54], [GrLe],
[Hy], superstability [HySh], [HyLe1],ω-stability and total transcendence [Le1],
and even simplicity [BuLe]. On the other hand, we have a Baldwin-Lachlan style
theorem [Le1], as well as the beginning of geometric model theory [HLS]. At
the time of [Ke], Keisler asked whether the existence of sufficiently homogeneous
models actually followed from categoricity. Shelah answered negatively using an
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example of Markus [Ma], and introduced the theory ofexcellence. To do this,
he first reduced the categoricity problem for the class of models of a sentence in
Lω1,ω to the categoricity of the class of atomic models of a countable first order
theory [Sh 54]. This reduction is an important step (see Baldwin’s paper in this
volume for more details on it); it shows that proving the categoricity conjecture
for Lω1,ω is equivalent to proving it for the apparently simpler context of the class
of atomic models of a countable first order theory. Then, in [Sh 87a], [Sh 87b],
Shelah showed:

Theorem -1.1. Assume2ℵn < 2ℵn+1 for eachn < ω. LetK be the class of atomic
models of a countable first order theory and assume further thatK has fewer than
2ℵ1 nonisomorphic models of sizeℵ1.

(1) If K is categorical in eachℵn, for n < ω, thenK is excellent.
(2) If K is excellent and categorical in some uncountable cardinal, thenK is

categorical in all uncountable cardinals.

Modulo some additional properties, (1) thus shows that categoricity im-
plies excellence, while (2) is the parallel to Morley’s theorem for excellent classes.
Above, (1) has the flavour of a nonstructure result and (2) belongs to structure
theory.

In this paper, we focus on the structure part. We present a proof of (2), un-
der the assumption that there exists a largefull model(see below for more details).
The existence of full models follows from excellence, and, for uncountable mod-
els, we can give an equivalent definition which makes sense for any class of atomic
models. The reason for using a full model is that it allows us to present the entire
treatment within ZFC and to remove the assumption on the number of uncountable
models; for example, we obtain all the properties of independence directly from
ω-stability.

Solving the categoricity problem for excellent classes marked the begin-
ning of classification theory in this context; Grossberg and Hart developed orthog-
onality calculus, introduced regular types, and proved the Main Gap for excellent
classes [GrHa] (see the related article by Grossberg and Lessmann in this volume).
We can also prove a Baldwin-Lachlan theorem, emphasising the role of quasimin-
imal types, and introduce a U-rank for types over models and obtain a picture very
similar to the first order case [Le3]. Finally, quasiminimal types can be used to gen-
eralise Hrushovski’s result [Hr] to the context of excellent classes [HLS], starting
geometric stability theory proper. Excellence is the precursor to Shelah’s work on
good frames for the categoricity problem for abstract elementary classes [Sh 705].

Excellence appears naturally in several mathematical contexts. For exam-
ple, it is the main dividing line when studying almost free algebras [MeSh] and it is
also the key property in Zilber’s work on complex exponentiation [Zi1] and [Zi2].
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Let us now say a few words about fullness. Understanding which types are
realised in the models of a class is a difficult problem as soon as the compactness
theorem fails. For example, fix ahomogeneousmodelM of a first order theory
T . There is no criterion to understand which types are realised insideM , except
for completetypes. We haveweak compactness: A complete (first order) typep ∈
S(A), with A ⊆ M and|A| < ‖M‖, is realised inM if and only ifp ¹ B is realised
in M for each finite subsetB of M . In full models, we have a similar condition
but for complete types overmodels(at least when the full model is uncountable).
An uncountable modelM of a countable first order theoryT is full, if M realises
every complete (first order) typep ∈ S(N), whereN ≺ M and‖N‖ < ‖M‖,
providedthatp ¹ B is realised inM for each finiteB ⊆ N . This gives us a way of
dealing with complete types over models.

In this paper, we consider the classK of atomic models of a countable
first order theory. We will assume that there is a sufficiently large modelC ∈ K
which is full; we do not assume that every (small) model ofK is in C (this will be
proved in the paper). We useC twice in the course of the paper. The first time is
to show that the categoricity ofK in some uncountable cardinal implies that the
class isω-stable, which means here thatC realises only countably many types over
countable elementary submodels. Theω-stability implies thatK admits a bounded
rank, which is then used to define an independence relation. We useC a second
time to prove the symmetry of the independence relation. Provided we restrict our
attention to types over models, we prove that the independence relation satisfies all
the properties of nonforking: symmetry, extension, transitivity, stationarity. This
allows us to defineindependent systemsof models andexcellence; i.e. K is excel-
lent if there exists a primary model over anyn-dimensional independent system of
countable models. We then prove some of the basic results of excellence, namely
the existence of primary models over other sets. Finally, we present Shelah’s cat-
egoricity theorem. At the end of the paper, we discuss Shelah’s original approach
and compare it with this presentation.

This paper grew out of lecture notes for a class on excellence that I gave
at Oxford University in 2002 during the Michaelmas term. It assumes only basic
model theory, say, up to Morley’s theorem. For expositional purposes, a particular
case of the general result is proved on two occasions, when the main idea is ob-
scured by the additional technicality. We also streamline the text with comparisons
to the relevant theorems of homogeneous model theory to illustrate both the differ-
ences and the limitations of the theorems, but familiarity with homogeneous model
theory is not essential.

0. TYPES AND ω-STABILITY

Fix a complete first order theoryT in a countable languageL. In this
paper, we consider the classK of atomicmodels ofT , i.e. M ∈ K if and only if
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M |= T and for any finite sequencec ∈ M , there exists a formulaφ(x) ∈ L such
thatφ(x) ` tp(c/∅,M).

As usual, we work in a large sufficiently saturated modelM̄ of T – which
is not inK. Satisfaction is defined with respect tōM . All sets and models are
assumed to be insidēM – soK is the class of atomic elementary submodels ofM̄ .
We use uppercase lettersA, B, C for sets,M , N for models, and lowercase letters
a, b, c for finite sequences. We writeAB for the union ofA andB andAc for the
union ofA with the range of the sequencec.

We first make a few observations about the classK. The next remark
shows that(K,≺), whereM ≺ N if M is an elementary submodel ofN , is an
abstract elementary class(see Grossberg and Lessmann’s paper in this volume for
a definition). The proofs are left to the reader.

Remark 0.1. LetK be the class of atomic models of the countable theoryT .

(1) (LS(K) = ℵ0) If A ⊆ M ∈ K, then there existsN ≺ M , A ⊆ N , such
that‖N‖ = |A|+ ℵ0. SinceN ≺ M andM ∈ K, thenN ∈ K.

(2) (Tarski-Vaught’s chain condition) If(Mi : i < α) is an increasing and
continuous elementary chain of models such thatMi ∈ K for eachi < α,
then

⋃
i<α Mi ∈ K. FurthermoreM0 ≺

⋃
i<α Mi and ifMi ≺ N ∈ K for

eachi < α then also
⋃

i<α Mi ≺ N .

Recall thatM is λ-homogeneousif for any elementaryf : M → M of
size less thanλ and a ∈ M there existsg : M → M extendingf such that
a ∈ dom(g). We say thatM is homogeneousif M is ‖M‖-homogeneous.

Remark 0.2. (1) Each model ofK is ω-homogeneous, and therefore embeds
elementarily any countable atomic set.

(2) There is a unique countable model inK.

We now consider the problem of types. As usual, we denote byS(A) the
set of completeL-types overA in finitely many variables. In the first order case,
all types are realisable by models of a theory; this is an important consequence of
the compactness theorem. In our context, the situation is a little more delicate; if
A ⊆ M ∈ K and ifp ∈ S(A) is realised inM by, say,c, thenA∪c is an atomic set.
This gives us anecessarycondition for which types are realisable in the models of
our class. We make the following definition:

Definition 0.3. We letSat(A) be the set of typesp ∈ S(A) such that for allc |= p,
the setAc is atomic.

WhenA is not atomic,Sat(A) is clearly empty. Also, ifAc is atomic for
somec |= p, thenAd is atomic for anyd |= p. Furthermore, if(Ai : i < α)
is an increasing and continuous sequence of atomic sets, and(pi : i < α) is an
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increasing and continuous sequence of types, withpi ∈ Sat(Ai) for i < α, then
the typep =

⋃
i<α pi ∈ Sat(

⋃
i<α Ai).

However, given a (partial) typep over an atomic setA (indeed, even for
a complete typep ∈ Sat(B), whereB is a subset ofA), there may not existq ∈
Sat(A) extendingp. This may fail also for countableA.

Another problem is that, in general, there may beA ⊆ M ∈ K andp ∈
Sat(A) not realised in anyN ∈ K. This only occurs foruncountableA, though: If
c ∈ M̄ realisesp ∈ Sat(A), thenAc is atomic by definition. IfA is countable, then
Ac embeds elementarily inside the countable modelM0 of K. This embedding
extends inM̄ to an elementary map whose range containsM0. The image ofM0

under the inverse of this map produces an atomic model containingAc. It follows
that, for countableA, the setSat(A) corresponds exactly to the set of types overA
realised by models inK.

The fact that, forA uncountable, some types inSat(A) will be omitted is
unavoidable unless there exists an(|A|+ ℵ0)-homogeneous model inK of size at
least|A| + ℵ0. But, as Shelah showed, there are uncountably categorical atomic
classesK not containing any uncountableω1-homogeneous model. So, outside of
homogeneous model theory, types over general sets are intractable. In this paper,
we will deal essentially with types overmodels. We make the following hypothesis
throughout the text.

Hypothesis 0.4.There exists a modelC ∈ K of size at least̄κ, for some suitably
large cardinal̄κ, with the property that ifp ∈ Sat(M) andM ≺ C of size less than
κ̄, thenp is realised inC.

In this paper, ‘suitably large’ means thatκ̄ is assumed to be at least the
categoricity cardinal, and at least theHanf numberfor atomic classes (= iω1). This
latter condition ensures, in particular, thatK has arbitrarily large models. We will
see in subsequent sections thatC is full. The existence of full models follows from
excellence; by introducing them early, we can present the entire theory within ZFC
in a very smooth way. The existence of full models does not imply the existence of
homogeneous models. Notice also that we do not assume thatall (small) models
of K embed inC (this will follow from excellence); for now, it is enough that all
countable models ofK embed intoC, which is a consequence ofω-homogeneity.

We now considerω-stability. There are several possible notions forω-
stability which we discuss below; some are equivalent, some are not.

Definition 0.5. The classK is λ-stable if | Sat(M)| ≤ λ, for eachM ∈ K of
sizeλ.

Proposition 0.6. The following conditions are equivalent:

(1) K is ω-stable.
(2) C realises only countably many types over countable subsets.
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(3) EachM ∈ K realises only countably many types over countable subsets.

Proof. (3) implies (2) is clear. To see that (2) implies (1), suppose thatSat(M) is
uncountable for some countableM ∈ K. By ω-homogeneity, we may assume that
M ≺ C, and thusC is notω-stable since it realises each type inSat(M). For (1)
implies (3), if M ∈ K realises uncountably many types over a countable subset,
then it realises uncountably many types over a countable submodelM0 ≺ N . Thus
Sat(M0) is uncountable, contradicting (1). ¤

K can beω-stable whileT is unstable: Consider the countable theory in
the language{N,+, 0, 1}, whereT has PA on the predicateN and asserts that the
complement ofN is infinite. T is unstable since it has the strict order property.
However, the classK of atomic models ofT has arbitrarily large homogeneous
models (hence satisfies our hypothesis 0.4), and isω-stable.

Without additional assumptions, theω-stability ofK does not even imply
that Sat(A) is countable for each countable atomicA: although each typep ∈
Sat(A) is realisable inside a model, there may be no model realisingjointly all
types inSat(A). If we had an uncountableω1-homogeneous model, we could do
this (or amalgamation over sets, which is the same); it turns out to be equivalent, as
is shown in the following fact [Le2]. The existence of countable setsA with Sat(A)
uncountable is a core difference with the categoricity problem in the homogeneous
case. It is the basic motivation behind excellence and will be revisited in Section 2.

Fact 0.7(Lessmann). Suppose thatSat(A) is countable for each countable atomic
setA. If K has an uncountable model, thenK has arbitrarily large homogeneous
models,

Throughout this paper, we will make occasional use of the following fact,
often referred to asMorley’s methods.

Fact 0.8. Suppose(ai : i < iω1) ⊆ M ∈ K. LetL∗ be an expansion ofL with
Skolem functions andT ∗ be the theory ofC is this expansion. Then there exists
an L∗-indiscernible sequence(bi : i < ω) such that for eachn < ω we can find
i0 < · · · < in < iω1 satisfying

tpL∗(b0, . . . , bn/∅) = tpL∗(ai0 , . . . , ain/∅).
It follows that the reduct toL of the Skolem Hull of(bi : i < ω) is a model ofK.

Recall thatK is λ-categoricalfor a cardinalλ if all models ofK of size
λ are isomorphic.K is alwaysℵ0-categorical. We now connect categoricity with
ω-stability.

Proposition 0.9. If K is λ-categorical for some uncountableλ, thenK is ω-stable.
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Proof. Suppose thatK is not ω-stable. ThenC realises uncountably many types
over a countable subset. By the Downward-Löwenheim theorem, we can findM ≺
C of sizeλ realising uncountably many types over a countable subset. On the other
hand, sinceK has arbitrarily large models, we can use Fact 0.8 to find an infinite
L∗-indiscernible sequence(bi : i < ω) inside someN ∈ K. By compactness,
we can extend(bi : i < ω) to a dense linearly orderedL∗-indiscernible sequence
I of sizeλ. By construction, the Skolem Hull ofI also omits all the nonisolated
types ofT (a counterexample would otherwise provide one inN ), and hence its
reduct is a model inK. It is easy to see that this reduct isω-stable of sizeλ, which
contradictsλ-categoricity. ¤

Shelah’s example to answer Keisler’s question negatively shows that un-
countable categoricity does not necessarily imply thatSat(A) is countable for all
countable atomicA.

1. RANK AND INDEPENDENCE

From now on, until the rest of the paper, we assume thatK is ω-stable. In
this section, we introduce a rank. The rank is bounded in theω-stable case, and
equality of ranks provides an independence relation which we show to be well-
behaved over models ofK.

Definition 1.1. For any formulaφ(x) with parameters inM ∈ K, we define the
rankRM [φ]. The rankRM [φ] will be an ordinal,−1, or∞ and we have the usual
ordering−1 < α < ∞ for any ordinalα. We define the relationRM [φ] ≥ α by
induction onα.

(1) RM [φ] ≥ 0 if φ is realised inM ;
(2) RM [φ] ≥ δ, whenδ is a limit ordinal, ifRM [φ] ≥ α for everyα < δ;
(3) RM [φ] ≥ α + 1 if the following two conditions hold:

(a) There isa ∈ M and a formulaψ(x, y) such that

RM [φ(x) ∧ ψ(x, a)] ≥ α and RM [φ(x) ∧ ¬ψ(x, a)] ≥ α;

(b) For everyc ∈ M there is a formulaχ(x, c) isolating a complete type
overc such that

RM [φ(x) ∧ χ(x, c)] ≥ α.

We write:

RM [φ] = −1 if φ is not realised inM ;
RM [φ] = α if RM [φ] ≥ α but it is not the case thatRM [φ] ≥ α + 1;
RM [φ] = ∞ if RM [φ] ≥ α for every ordinalα.

For any set of formulasp(x) overA ⊆ M , we let

RM [p] = min{RM [φ] | φ = ∧q, q ⊆ p, p finite }.
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Note that the conditionR[p] ≥ 0 does not imply thatp is realised in a
model ofK.

We first write down a few properties of the rank. They are all basic and
can be proved easily by induction or directly. (7) follows from (6) and (1) using
the countability of the languageL.

Lemma 1.2. (1) RM [φ(x, b)] depends onφ(x, y) andtp(b/∅) only.
(2) If p is overM andN , for M, N ∈ K, thenRM [p] = RN [p].
(3) If p is finite andφ is obtained by taking the conjunction of all the formulas

in p, thenR[p] = R[φ].
(4) (Finite Character) For eachp there is a finite subsetq ofp such thatR[p] =

R[q].
(5) (Monotonicity) Ifp ⊆ q, thenR[p] ≥ R[q].
(6) If R[p] = α andβ < α there isq such thatR[q] = β.
(7) There exists an ordinalα0 < ω1, such that ifR[p] ≥ α0 thenR[p] = ∞.

In view of (2), we will drop the subscriptM . We now show thatω-stability
implies that the rank is bounded (the converse is Proposition 1.6). The idea of
the proof is essentially like the first order case: we construct of binary tree of
formulas, whose branches give us continuum many types. There is one difference:
to contradictω-stability, we need the types to be inSat(M) for some countable
M ∈ K. To achieve this, we simply choose isolating formulas along the way, and
force the parameters to enumerate a model.

Theorem 1.3. R[p] < ∞ for every typep.

Proof. We prove the contrapositive. Suppose there is a typep over some atomic
modelM such thatR[p] = ∞. We may assume thatp = {φ(x, b)} is a formula
and also thatM is countable by the previous lemma. Let{ai : i < ω} be an
enumeration ofM .

We construct formulasφη(x, bη), for η ∈ <ω2, such that:

(1) φη(x, bη) isolates a complete type overbη;
(2) |= ∀x[φν(x, bν) → φη(x, bη)] whenη < ν;
(3) φη 0̂ andφη 1̂ are contradictory;
(4) R[φη] = ∞;
(5) a`(η) ∈ bη.

This is possible: The construction is by induction on`(η).

For 〈〉: SinceR[φ] = ∞, in particularR[φ] ≥ ω1 + 1 so there existsφ〈〉
overba0 isolating a complete type overba0 such thatR[φ∧φη] ≥ ω1. The formula
φ〈〉 is as required.
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Assume that we have constructedφη(x, bη) with `(η) < ω. SinceR[φη] =
∞, in particularR[φη] ≥ (ω1 + 1) + 1. Hence, there isc ∈ M andψ(x, y) such
that

(*) R[φη ∧ ψ(x, c)] ≥ ω1 + 1 and R[φη ∧ ¬ψ(x, c)] ≥ ω1 + 1.

Let bη 0̂ = bη 1̂ = cbηa`(η)+1. By (*) and the definition of the rank ((3)(b)), there
areφηˆ̀ (x, bηˆ̀ ) isolating a complete type overbηˆ̀ for ` = 0, 1, such that

R[φη ∧ ψ(x, c) ∧ φη 0̂(x, bη 0̂)] ≥ ω1

and
R[φη ∧ ¬ψ(x, c) ∧ φη 1̂(x, bη 1̂)] ≥ ω1

Thenφηˆ̀ (x, bηˆ̀ ) are as required, for̀= 0, 1.

This is enough: For eachη ∈ ω2, definepη :=
⋃

n∈ω pη�n. Notice that
eachpη determines a complete type overM with the property thatMcη is atomic
for any realisationcη of pη. Hence, eachpη ∈ Sat(M), soSat(M) has size contin-
uum, which contradicts theω-stability ofK. ¤

Recall thatp ∈ Sat(A) splits overB ⊆ A if there existc, d ∈ A realising
the same type overB andφ(x, y) such thatφ(x, c) ∈ p and¬φ(x, d) ∈ p. The
next proposition examines the connection between the rank and nonsplitting. It
also shows that we may haveat mostone same rank extension over a model.

Proposition 1.4. If p ∈ Sat(M), M ∈ K and φ(x, b) ∈ p such thatR[p] =
R[φ(x, b)]. Thenp does not split overb. Furthermore,p is the only type inSat(M)
extendingφ(x, b) with the same rank.

Proof. Suppose thatp splits overb. Letψ(x, y), andc, d ∈ M such thattp(c/b) =
tp(d/b) andψ(x, d) ∈ p and¬ψ(x, d) ∈ p. ThenR[φ(x, b) ∧ ψ(x, c)] ≥ α,
andR[φ(x, b) ∧ ¬ψ(x, d)] ≥ α by monotonicity. By Lemma 1.2, we also have
R[φ(x, b)∧ψ(x, d)] ≥ α, so (a) of the rank is satisfied at the successor stage. Now
let e ∈ M . By monotonicity,R[p ¹ bc] ≥ α. There existsχ ∈ p ¹ bc isolating
p ¹ bc. By monotonicity,R[φ ∧ χ] ≥ α, so (b) of the rank is satisfied at the
successor stage. HenceR[φ] ≥ α + 1, a contradiction.

For uniqueness, suppose thatq 6= p ∈ Sat(M) extendφ(x, b). Suppose
ψ(x, c) ∈ q such that¬ψ(x, c) ∈ p. By monotonicity, we haveR[φ(x, b) ∧
ψ(x, c)] ≥ α andR[φ(x, b) ∧ ¬ψ(x, c)] ≥ α, so (a) of the rank is satisfied. It
is easy to see that (b) of the rank is satisfied the same way as the previous para-
graph ¤

The proposition shows that ifp ∈ Sat(M) thenp does not split over a finite
set. This is not true forp ∈ Sat(A) in general.

Proposition 1.5. Let p ∈ Sat(M), M ∈ K and let φ(x, b) ∈ p be such that
R[p] = R[φ]. Let C be an atomic set containingM , then there exists a unique
q ∈ Sat(C) extendingφ (and thereforep) such thatR[p] = R[q].
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Proof. Let φ(x, b) ∈ p such thatR[p] = R[φ]. By the previous proposition,p does
not split overb. Let q be the following set of formulas

{ψ(x, c) : c ∈ C,ψ(x, y) ∈ L, there existsc′ ∈ M realising tp(c/b)}.
Sincep does not split overb, this is well-defined. Similarly, this determines a type
q ∈ Sat(C). It is easy to check thatq does not split overb and has the same rank
asp.

For uniqueness, suppose thatR[q`] = R[φ], for ` = 1, 2 both containφ.
ThenR[q` ¹ M ] = R[p] for ` = 1, 2 be the previous proposition. Thenq1 = q2

since both do not split overb. ¤

We now prove the converse to Theorem 1.3. Together, they form a par-
ticular case of the stability spectrum theorem;ω-stability impliesλ-stability for
all λ.

Proposition 1.6. If R[p] < ∞ for all typesp, thenK isλ-stable, for each infiniteλ.

Proof. Let M ∈ K. Let p ∈ Sat(M) and letφ(x, b) ∈ p such thatR[p] =
R[φ(x, b)]. Sincep is the only extension ofφ(x, b) with the same rank, the number
of types inSat(M) is at most the number of formulas overM , which is‖M‖. ¤

In general, a type may fail to have an extension to a larger set, so in partic-
ular, it may fail to have a same rank extension. This is why we consider stationary
types.

Definition 1.7. We say thatp ∈ Sat(A) is stationary if there existsb ∈ A,
φ(x, b) ∈ p, and M ∈ K containingA with q ∈ Sat(M), φ(x, b) ∈ q and
R[φ(x, b)] = R[p] = R[q].

Clearly, complete types over models are stationary. The previous proposi-
tion does not assert that the nonsplitting extension is actually realised in a model
(it is, if we work insideC). It only says that whenp ∈ Sat(A) is stationary andC
is atomic containingA, there is a unique extension inSat(C) of the same rank. We
will denote this extension byp ¹ C.

We now introducefullness, a substitute for saturation. Full is called weakly
full in [Sh 87a].

Definition 1.8. A modelM ∈ K is λ-full over A ⊆ M if for all stationaryp ∈
Sat(B) with B ⊆ M finite, and for allC ⊆ M of size less thanλ, M realises
p ¹ ABC. We say thatM is λ-full if M is λ-full over each subset of size less than
λ. Finally, we say thatM is full if M is λ-full for λ = ‖M‖.

Note that ifM is λ-full then M realises eachp ∈ Sat(N) for N ≺ M
of size less thanλ. Also, if M is λ-full over A, then it isλ-full over B, for any
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B ⊆ A. We have the following easy proposition, which is left to the reader. It
shows thatC is κ̄-full:

Proposition 1.9. LetM ∈ K be uncountable. The following are equivalent;

(1) M is λ-full.
(2) M realises eachp ∈ Sat(N), with N ≺ M of size less thanλ.

We are going to prove Symmetry over models. For this, we will use the
order property which was introduced by Shelah in [Sh 12].

Definition 1.10. We say thatK has theorder propertyif there exist a modelM ∈
K, a formulaφ(x, y) ∈ L and(di : i < iω1) ⊆ M such that

M |= φ(di, dj) if and only if i < j.

In the definition above, it is equivalent to ask for arbitrarily long orders
(use Morley’s methods). It is a familiar theorem in the first order case that the
order property contradicts stability. It holds at this level of generality also – but
it is necessary to have arbitrarily long orders. We present the following particular
case suitable for our purposes.

Proposition 1.11.K does not have the order property.

Proof. Suppose thatK has the order property. Let(di : i < iω1) ⊆ M ∈ K such
thatM |= φ(di, dj) if and only if i < j. By Fact 0.8, there exists(bn : n < ω)
L∗-indiscernible such that|= φ(bn, bm) if and only if n < m, and furthermore, the
reduct toL of the Skolem Hull of(bn : n < ω) is inK. By compactness, we can
find (bi : i ∈ R) L∗-indiscernible such that any finite subsequence of it satisfies the
sameL∗-type as any finite subsequence of(bn : n < ω) of the same length. LetN
be the reduct toL of the Skolem Hull of(bi : i ∈ R). By constructionN ∈ K (it
is a model ofT and must be atomic since a counterexample can be used to provide
a counterexample inM ). FurthermoreN |= φ(bi, bj) if and only if i < j. Letting
B =

⋃
i∈Q bi gives us a countable subset ofN over which2ℵ0 types are realised

by density ofQ. This contradicts theω-stability ofK (Proposition 0.6). ¤

We can now prove the symmetry property of the rank.

Proposition 1.12. (Symmetry) Leta, c andM ∈ K be such thatMac is atomic.
ThenR[tp(a/Mc)] = R[tp(a/M)] if and only ifR[tp(c/Ma)] = R[tp(c/M)].

Proof. Notice that by Finite Character and Monotonicity, we may assume thatM
is countable, and so byω-homogeneity ofC, we may assume thata, c andM are
insideC. Suppose the conclusion of the proposition fails; we will contradict the
ω-stability ofK by showing that it has the order property. We can choose a formula
ψ(x, y) overM such that

R[tp(a/Mc)] = R[ψ(x, c)] = R[tp(a/M)]
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while
R[tp(c/Ma)] = R[ψ(a, y)] < R[tp(c/M)].

Define(ai, ci : i < iω1) ⊆ C andBi = M ∪ {aj , cj : j < i} such that

(1) ci ∈ C realisestp(c/M) andR[tp(ci/Bi)] = R[tp(c/M)],
(2) ai ∈ N realisestp(a/M) andR[tp(ai/Bici) = R[tp(a/M)].

This is possible since bothtp(a/M) andtp(c/M) are stationary and thus the real-
isationsai andci in (1) and (2) of the unique nonsplitting extensions of these types
exist by fullness ofC.

This implies the order property: Suppose thati > j. Thenaj ∈ Bi. If
|= ψ(aj , ci), thenR[tp(ci/Bi)] ≤ R[ψ(ai, y)] = R[ψ(a, y)] < R[tp(ci/Bi)]
contradicting (1) (we used the fact thattp(ai/M) = tp(a/M) to see that the
middle equality holds). Hence|= ¬ψ(aj , ci) if i > j.

Now if i ≤ j, then we havetp(aj/Mc) = tp(a/Mc), by uniqueness of
same rank extensions, so|= ψ(aj , c). Sincetp(aj/Bjcj) does not split overB by
(2) andtp(c/M) = tp(ci/M), we must have|= ψ(aj , ci).

Thus,φ(x1, x2; y1, y2) := ψ(x1, y2) anddi := ciai, for i < iω1 , witness
the order property. ¤

We can now define a natural independence relation using the rank: For
A,B, C such thatA ∪B ∪ C is atomic, we write

A ^
B

C if R[tp(a/BC)] = R[tp(a/B)], for all a ∈ A.

We will say thatA is free from C overB if A ^
B

C. We now gather the properties

we have established for this dependence relation. The reader used to the first order
case may wonder whether (6) and (8) hold with sets instead of models. The answer
is no in general.

Proposition 1.13. AssumeA, B,C, D are sets whose union is atomic.

(1) (Invariance) Iff is an elementary map, then

A^
B

C if and only if f(A) ^
f(B)

f(C).

(2) (Monotonicity) IfA′ ⊆ A andC ′ ⊆ C ∪B andA ^
B

C, thenA′^
B

C ′.

(3) (Finite Character)

A ^
B

C if and only if A′^
B

C ′,

for each finiteA′ ⊆ A and finiteC ′ ⊆ C.
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(4) (Transitivity) IfB ⊆ C ⊆ D, then

A ^
B

C and A ^
C

D if and only if A^
B

D.

(5) (Local Character) Ifa∪C is atomic, then there exists a finiteB ⊆ C such
thata ^

B
C.

(6) (Extension over models) LetA ∪M be atomic,M ∈ K andC be atomic
containingA. Then there existsa′ realising tp(a/M) such thata′ ∪ C is
atomic anda′ ^

M
C.

(7) (Stationarity over models) Suppose thata` realisestp(a/M), a` ∪ C is
atomic, anda` ^

M
C for ` = 1, 2. Thentp(a1/C) = tp(a2/M).

(8) (Symmetry over models) IfA ∪ C ∪M is atomic, then

A ^
M

C if and only if C ^
M

A.

In the sequel, we will use these properties extensively; on occasions, we
will simply say ‘by independence calculus’ when establishing the independence of
certain sets from others by using a sequence of these properties.

2. GOOD SETS, PRIMARY, AND FULL MODELS

Recall thatK is ω-stable. In order to define excellence, we will also need
primarymodels.

Definition 2.1. We say thatM ∈ K is primary overA, if M = A ∪ {ai : i < α},
and for eachi < α the typetp(ai/A ∪ {aj : j < i}) is isolated.

The sequence(ai : i < α) is referred to as aconstructionof M overA. It
is a standard fact that ifM ∈ K is primary overA then for eachc ∈ M , the type
tp(c/A) is isolated. IfM is primary overA, then it is easy to see that it is prime
overA. Recall that a modelM ∈ K is prime overA, if for eachN ∈ K containing
A, there is an elementary mapf : M → N which is the identity onA.

The main tool for producing primary models over countable sets is the
following corollary to Henkin’s omitting type theorem:

Fact 2.2. Let T be a countable theory. Assume that for each consistent formula
φ(x) there exists a complete type over the empty set containingφ(x) which is
isolated. Then there exists a countable atomic model ofT .

This leads to the next definition, important mostly for countable sets.

Definition 2.3. An atomic setA is good if for each φ(x, a) with a ∈ A and
|= ∃xφ(x, a), there is a complete typep ∈ Sat(A) containingφ(x, a) which is
isolated.
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The next lemma is the motivation behind the definition of good sets.

Lemma 2.4. LetA be countable and atomic. IfA is good, then there is a primary
model overA.

Proof. Form the theoryTA by expandingT with countably many constants for the
elements ofA. The assumptions of the previous fact are satisfied forTA sinceA is
good, so there exists a countable atomic modelM(A) for TA. It is easy to see that
the reduct ofM(A) to the original language is a primary model overA. ¤

We will find several equivalent properties for good sets in a few more lem-
mas culminating in Corollary 2.8.

Lemma 2.5. Let A be a countable atomic set. IfSat(A) is countable, thenA is
good.

Proof. SupposeA is not good: Then there existsφ(x, a) with a ∈ A and |=
∃xφ(x, a), but no isolated extension ofφ(x, a) exists inSat(A). Thus, for each
ψ(x, b) with b ∈ A with |= ∀x(ψ(x, b) → φ(x, a)), there isb′ ∈ A such that
ψ(x, b) has at least two extensions inSat(abb′). We will use this to contradict the
countability ofSat(A), in a similar way to the proof of boundedness of the rank.

Let A = {ai : i < ω}. We constructψη(x, bη) for η ∈ <ω2 such that
ψ〈〉(x, b〈〉) = φ(x, a), if η < ν then|= ∀x(ψη(x, bη) → ψν(x, bν)), eachψη(x, bη)
isolates a complete type overbη, bη containsai if `(η) > i, andψη 0̂(x, bη 0̂) and
ψη 1̂(x, bη 1̂) are contradictory. This is possible and implies thatSat(A) has size
continuum. ¤
Lemma 2.6. If M ∈ K is countable andMc is atomic, thenMc is good.

Proof. For eachtp(d/Mc) ∈ Sat(Mc), considertp(dc/M) ∈ Sat(M). It is easy
to see that this induces an injection fromSat(Mc) into Sat(M). HenceSat(Mc) is
countable, sinceSat(M) is countable byω-stability ofK. Hence,Mc is good. ¤

We now consider the dual notion to prime models. We say thatN is uni-
versal overA, if A ⊆ N , and forM ∈ K with A ⊆ M and‖M‖ = ‖N‖, there
exists an elementary mapf : M → N which is the identity onA.

Lemma 2.7. If M ∈ K is countable, then there exists a countable universal model
N ∈ K overM .

Proof. Let (Mn : n < ω) be an increasing sequence of countable models such that
M0 = M andMn+1 realises all types inSat(Mn). We could do this at once using
C, but C is not necessary here: Let{pi : i < ω} be an enumeration ofSat(Mn).
Let a0 realisep0 (which exists sinceMi is countable) and letM ′

0 be primary over
Mna0, which exists by the three previous lemmas. Sincep1 is stationary, there
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exists a unique free extensionq1 overM ′
0. Let a1 realiseq1. Let M ′

1 be primary
overM ′

0a1. Continue like this inductively. LetMn+1 =
⋃

i<ω M ′
i .

Let N =
⋃

n<ω Mn. We claim thatN is universal overM . Let M ′ ∈ K
be countable such thatM ≺ M ′. Write M ′ = {ai : i < ω}. We construct an
increasing sequence of elementary maps

fi : M ∪ {a0, . . . , ai} → N,

which is the identity onM for i < ω. This is enough as
⋃

i<ω fi is an elementary
map sendingM ′ into N , which is the identity onM .

Let us now construct thefis. Fori = 0, let b0 realisetp(a0/M) ∈ Sat(M)
which exists inN by construction, and letf0 be the partial elementary map from
Ma0 which is the identity onM and sendsa0 to b0. Having constructedfi, letM∗
be a primary model overM ∪{a0, . . . , ai} which exists, sinceM ∪{a0, . . . , ai} is
good. There existsk < ω such thata0, . . . , ai ∈ Mk. By definition, we can extend
fi to f∗i : M∗ → Mk, which is the identity onM . Then the image oftp(ai+1/M

∗)
underf∗i can be extended to a type inSat(Mk) (by stationarity), which is then
realised by some elementbi+1 of Mk+1. Let fi+1 be the partial elementary map
extendingfi and sendingai+1 to bi+1. This finishes the construction. ¤

So, we finally have:

Corollary 2.8. Let A be a countable atomic set. The following conditions are
equivalent:

(1) A is good.
(2) There is a primary model overA.
(3) There is a countable universal model overA.
(4) Sat(A) is countable.

Proof. We showed (1) implies (2) and (4) implies (1). For (2) implies (3): LetM
be primary overA. By the previous lemma there existsN universal overM . This
implies immediately thatN is universal overA. (3) implies (4) is clear: LetN be
universal overA. Eachp ∈ Sat(A) is realised in some countable modelMp, which
embeds inN overA by universality ofN . Hence, eachp ∈ Sat(A) is realised in
N so|Sat(A)| ≤ ‖N‖. ¤

Unless we are in the homogeneous case, there are countable atomic sets
A such thatSat(A) is uncountable, so some sets are good and others are not. The
next remark follows by counting types.

Remark 2.9. Let A be countable and good. Letc realisep ∈ Sat(A). ThenAc is
good.
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We pointed out in a previous section that a typep ∈ Sat(A) may fail to
have an extension inSat(M) whereM containsA; this only happens whenA is
not good. In fact, it follows easily from the next lemma andω-stability ofK that
a countable setA is good if and only if each type inSat(A) extends to a type over
M for anyM containingA.

Lemma 2.10. Let A be atomic. LetB ⊆ A be a countable good set. Letp ∈
Sat(B). Then there isq ∈ Sat(A) extendingp.

Proof. Let M be a primary model overB. Let c |= p and letM ′ be a primary
model overBc (which exists by the previous remark). Without loss of generality
M ≺ M ′. Hencetp(c/M) ∈ Sat(M) is an extension ofp. Defineq ∈ Sat(A)
extendingp, usingtp(c/M), just as in the proof of Proposition 1.5. ¤

We finish this section with the problem of existence and uniqueness of
countable full models over countable sets.

Proposition 2.11. Let A be countable and atomic. Then there exists a countable
M ∈ K which is full overA.

Proof. Let M0 be any countable model containingA. Let Mn+1 be countable
realising each type inSat(Mn). Let N =

⋃
n<ω Mn. ThenN ∈ K is countable

and containsA. We claim thatN is full over A. Let p ∈ Sat(Ac) be the unique
free extension of a stationary type inSat(c). There isn < ω such thatc ∈ Mn, so
Ac ⊆ Mn. There is a unique free extension ofp in Sat(Mn), and this extension is
realised inMn+1, hence inN . ¤

For uniqueness,A needs to be good.

Proposition 2.12. Suppose thatA is good and countable. Suppose thatM and
N ∈ K are countable and full overA. ThenM is isomorphic toN overA.

Proof. Let M = A ∪ {ai : i < ω} andN = A ∪ {bi : i < ω}. We construct an
increasing and continuous sequence of partial elementary mapsfi : M → N such
thatdom(fi) = Ai, ran(fi) = Bi, fi ¹ A = idA andai ∈ A2i andbi ∈ B2i+1,
AiBi \A is finite.

This is clearly enough. Let us see that this is possible. We first constructf0.
SinceA is good, there is a primary modelM ′ overA. Without loss of generality
M ′ ≺ M . There is an elementary mapf : M ′ → N , which is the identity on
A. Consider the stationary typetp(a0/M

′). It is the unique free extension of the
stationary typep = tp(a0/Ac) for somec ∈ M ′. The image ofp underf is
realised inN by someb, by fullness ofN , andtp(a0/A) = tp(b/A). Letf0 be the
map extendingidA sendinga0 to b.
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Let M ′′ be primary overAb (M ′′ exists sinceA is good andAb is atomic).
There existsg : M ′′ → M extending the inverse off0. The stationary type
tp(b0/M

′′) is the unique extension of someq ∈ Sat(Abd), with d ∈ M ′′. The
image ofq underg is realised inM by fullness ofM overA, so the mapf1 ex-
tendingf0 sending a realisation ofg(q) to b0 is elementary.

Now assume thatf2i+1 has been constructed. ThenA2i+1 \ A is finite, so
A2i+1 is a good set containingA. Hence, there is a primary modelM ′ containing
A2i+1. The typetp(ai+1/M

′) is stationary and is the unique free extension of a
typep = tp(ai+1/A2i+1c) for somec ∈ M ′. There isf : M ′ → N extending
f2i+1. The image ofp underf is realised inN , which allows us to findf2i+2 with
domainA2i+1 ∪ ai+1, extendingf2i+1. The construction off2i+3 is similar. ¤

3. INDEPENDENT SYSTEMS, EXCELLENCE, AND CATEGORICITY THEOREM

To motivate the definition of excellence, let us consider the problem of
existence and uniqueness of uncountable full models. For full models of sizeℵ1

over a countable (good) set, it is still manageable. For existence: simply iterateω1-
times the construction of Proposition 2.11 (or, under our assumption, to consider
an appropriate submodel ofC). For uniqueness: To show thatM , N ∈ K of size
ℵ1, full over the good countable setA, are isomorphic, choose(Mi : i < ω1),
and(Ni : i < ω1) increasing and continuous chain of countable models such that⋃

i<ω1
Mi = M and

⋃
i<ω1

Ni = N , with M0 andN0 primary overA, Mi+1

full over Mi andNi+1 full over Ni. The isomorphism betweenM andN is then
defined inductively by using Proposition 2.12.

However, to prove the existence or uniqueness of uncountable full models
over larger sets (for example over a model of sizeℵ1), or to prove the existence
and uniqueness of full models of size at leastℵ2 is more problematic. The key
ingredient in both proofs is the existence of a primary model overMa, whereM ∈
K countable andMa is atomic. We have not proved this forM ∈ K uncountable.
Here is a possible strategy to prove this forM of size, say,ℵ1:

Choose(Mi : i < ω1) a resolution ofM . There exists a primary model
N0 overM0a, sinceM0a is good. SupposeN0 ∪ M1 is atomic and good. Then
we could findN1 primary overN0 ∪M1. Inductively, ifNi ∪Mi+1 is atomic and
good for eachi < ω1, then we could continue this process, and by taking unions
at limit, obtain an increasing and continuous chain of models(Ni : i < ω1) such
thatNi+1 is primary overNi ∪ Mi+1. The hope is then that, by pasting together
the constructions, one could show that

⋃
i<ω1

Ni is primary overMa. To help us
carry out this construction, we will use independence. First chooseM0 countable
such that, in addition,a is free fromM overM0; this, we will see, ensures that the
primary modelN0 is free fromM overM0 andN0 ∪ M is atomic. Inductively,
assume thatNi is free fromM overMi andNi∪M is atomic. Then, ifNi∪Mi+1

is good, we can findNi+1 primary overNi ∪Mi+1 such that, in addition,Ni+1 is
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free fromM overNi+1 andNi+1 ∪M is atomic. Taking unions at limit allows us
to constructN =

⋃
i<ω1

Ni (providedNi ∪Mi+1 is good at each stage), and now,
it is easy to see thatN is primary overMa. Thus, the problem of finding a primary
model overMa is reduced to finding primary models over countable sets of the
form M1 ∪M2, whereM1 is free fromM2 overM0, andM1 ∪M2 is atomic. The
gain is that the models involved are countable; the cost is that we have to consider
2-dimensional (independent) systems:Ni+1 completes a square whose vertices are
Mi, Mi+1, andNi and edges given by the relation≺.

Now considerMa, with M ∈ K with Ma atomic, but this time withM of
sizeℵ2. Using the same idea leads us to ask about the existence of primary models
over the atomic setM1 ∪ M2, whereM0,M1, M2 ∈ K, M0 ≺ M1, M2, M1 is
free fromM2 over M0, andM` has sizeℵ1 for ` = 0, 1, 2, i.e. an independent
2-dimensional system of models of sizeℵ1. We can repeat the same procedure to
analyse this 2-dimensional system. Write a resolution(M i

` : i < ω1) of countable
models for eachM`, ` = 0, 1, 2. We can try to construct the primary model over
M1 ∪M2 as the union of an increasing and continuous chain of models(Ni : i <
ω1) such thatN0 is primary overM0

1 ∪M0
2 , andNi+1 primary overM i+1

1 ∪M i+1
2 ∪

Ni. To carry this out, we need to ensure that the countable setsM i+1
1 ∪M i+1

2 ∪Ni

are atomic and good at each stagei < ω1; here again independence will play an
important part. In all, the gain is that the models are now countable, but the cost is
that we have to consider 3-dimensional systems:Ni+1 completes the cube whose
7 other vertices areNi, M i

1, M i
2, M i

0, andM i+1
1 , M i+1

2 , andM i+1
0 , again edges

are given by≺. We formalise these ideas next.

We consider the following partial orderP−(n) := P(n) \ n with respect
to inclusion. We writes ⊂ t, if s is a strict subset oft, soP−(n) = {s : s ⊂ n},
wheren = {0, 1, . . . , n− 1}. Then,P−(0) is empty,P−(1) is a point,P−(2) is a
square without one of its vertices,P−(3) is a cube without one its vertices, and so
forth.

Definition 3.1. An independent(λ, n)-systemis a collection of models

(Ms : s ⊂ n)

such that

(1) EachMs ∈ K has sizeλ.
(2) Ms ≺ Mt if s ⊂ t.
(3) The setAs =

⋃
t⊂n Mt is atomic.

(4) For eachs, Ms ^
As

Bs, whereBs =
⋃

t6⊂s Mt.

We will omit the parameters when they are either obvious or not important.

The next definition is not formally made in [Sh 87b]. Also, in [Sh 87b],
(λ, n)-existence refers to a different property.
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Definition 3.2. We say thatK has(λ, n)-existenceif there exists a primary model
over

⋃
s⊂n Ms, for each(λ, n)-independent system(Ms : s ⊂ n).

Thus, in this paper,(ℵ0, n)-existence is equivalent to the requirement that⋃
s⊂n Ms is good for any independent(ℵ0, n)-system. The next definition is the

main definition of this paper.

Definition 3.3. K is excellentif K has(ℵ0, n)-existence, for eachn < ω.

We will now show how the existence of primary models over some (count-
able) sets implies the existence of primary models over other sets. If we had pri-
mary models overall countableatomic sets, then we would have them over all
atomic sets [Le2].

Fact 3.4 (Lessmann). Assume thatK is ω-stable and has an uncountable model.
The following are equivalent:

(1) There is a primary model over each countable atomic set.
(2) There is a primary model over each atomic set.
(3) There are arbitrarily large homogeneous models.

In our case, the situation is a bit more delicate. We now prove a lemma,
which we refer to asdominance.

Lemma 3.5. Suppose thatA ^
M

B, whereM ∈ K and ABM is an atomic set.

Suppose thatM(A) is primary overMA. ThenM(A) ^
M

B.

Proof. By finite character of independence, it is enough to show this forA andB
finite. WriteA = a andB = b. It is also enough to show that iftp(c/Ma) is iso-
lated anda ^

M
b, thenc ^

M
ab. But this is clear sincetp(c/Ma) isolatestp(c/Mab)

(asM is a model). ¤

We now formalise the proof discussed at the beginning of this section with
two theorems. The first shows that the existence of primary models over sets of the
form Ma does indeed follow from the existence of primary models over indepen-
dent2-dimensional systems of models of smaller size.

Theorem 3.6. Suppose thatK has (µ, 2)-existence, for eachµ < λ. Then, if
M ∈ K has sizeλ andMa is atomic, there exists a primary model overMa.

Proof. Let B be a finite subset ofM such thatc^
B

M . Choose an increasing and

continuous sequence of models(Mi : i < λ), such thatMi ∈ K, B ⊆ Mi,
‖Mi‖ ≤ |i|+ ℵ0, and

⋃
i<λ Mi = M .
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Now construct an increasing and continuous sequence of models

(Ni : i < λ)

such thatNi ^
Mi

M , Ni ∪ M is atomic,N0 is primary overM0a, andNi+1 is

primary overNi ∪Mi+1.

For i = 0, a primary modelN0 over M0a exists, sinceM0 is countable
(and soM0a is good). By independence calculus, we may assume thatM ∪N0 is
atomic andN0 ^

M0

M . Hence,(M0, N0, M1) form an independent(ℵ0, 2)-system.

Inductively, notice that(Mi, Ni,Mi+1) forms an independent(|i|+ℵ0, 2)-system.
By (|i| + ℵ0, 2)-existence, there existsNi+1 primary overMi+1 ∪ Ni. By in-
duction hypothesis and monotonicity,Ni ^

Mi+1

M , soNi ∪Mi+1 ^
Mi+1

M . Thus

Ni+1 ^
Mi+1

M by dominance. At limits, take the union and notice that the inde-

pendence and atomicity follows by finite character of these notions.

Let N =
⋃

i<λ Ni. Then, by pasting the constructions together and using
independence, it is not difficult to see thatN is primary overMa. ¤

The next theorem states that the same principle extends to larger dimen-
sions.

Theorem 3.7. Letλ be an infinite cardinal andn < ω. Suppose thatK has(µ, n)
and(µ, n + 1)-existence, for eachµ < λ. ThenK has(λ, n)-existence.

Proof. We prove the particular case whenn = 2. SupposeM0 ≺ M`, for ` = 1, 2
forms an independent(λ, 2)-system.

Choose an increasing and continuous sequences(M i
` : i < λ) of models

of K such that‖M i
`‖ ≤ |i|+ ℵ0, for ` = 0, 1, 2, with

⋃
i<λ+ M i

` = M` and

(*) M i
1 ^
M i

0

M2 and M i
2 ^
M i

0

M1.

This is done as follows: EnumerateM` = {ai
` : i < λ}, for ` = 0, 1, 2. For

i a limit, defineM i
` by continuity. Fori = 0 or a successor, having chosenM i

`

containingai
`, chooseM i

0 containingai
0 of size|i|+ ℵ0 such thatM0

` ^
M i

0

M0, for

` = 1, 2. Then, we obtain (*) by transitivity, sinceM1 ^
M0

M2.

Now construct an increasing and continuous sequence of models

(Ni : i < λ)

such that:
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(1) N0 is primary overM0
1 ∪M0

2 ,
(2) NiM1 ∪M2 is atomic,
(3) Ni+1 is primary overM i+1

1 ∪M i+1
2 ∪Ni,

(4) Ni =
⋃

j<i Nj , for i a limit.

This is possible: Fori = 0, we use(ℵ0, 2)-existence (atomicity is obtained by
extension). At successor stagei, we use(|i|+ ℵ0, 3)-existence after checking that
(M i

` ,M
i+1
` , Ni : ` = 0, 1, 2) forms an independent(|i|+ ℵ0, 3)-system (use inde-

pendence calculus and dominance, just as the previous theorem). At limit stages,
we defineNi by continuity (again, atomicity is preserved and so is independence).

This is enough, as
⋃

i<λ Ni is primary overM1 ∪ M2 (pasting the con-
structions and using independence). ¤

We now show two theorems showing that excellence implies the existence
of primary models also over uncountable sets (this can be further extended to other
systems of models [GrHa]).

Theorem 3.8. Suppose thatK is excellent. Then,K has(λ, n)-existence for all
n < ω and for all cardinalsλ.

Proof. We prove this by induction onλ for all n < ω. For λ = ℵ0, this is the
definition of excellence. Assume now thatλ > ℵ0, and that(µ, n)-existence holds
for eachµ < λ and for alln < ω. Then(λ, n)-existence follows from Theo-
rem 3.7. ¤

We can finally prove:

Theorem 3.9. Suppose thatK is excellent. Then for anyM ∈ K anda such that
Ma is atomic, there exists a primary model overMa.

Proof. By Theorems 3.6 and 3.8. ¤

The previous theorem was the key idea behind extending the proof of the
existence of full models to higher cardinalities. Before doing this, we prove a
lemma.

Lemma 3.10.Assume thatK is excellent. Suppose that(Mi : i < λ) is an increas-
ing and continuous chain of models inK, p ∈ S(C) is stationary withC ⊆ M0,
and for eachi < λ, ai ∈ Mi+1 \ Mi and the typetp(ai/Mi) is the unique free
extension ofp. LetI = (ai : i < λ). Then

(1) I is indiscernible overM0.
(2) For eachb ∈ Mλ, there is a finite setJ ⊆ I such thatI \J is indiscernible

overb.
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Proof. Indiscernibility overM0 is clear. Let us prove (2). Construct(Ni : i < λ)
increasing and continuous such thatNi ≺ Mi andN0 is countable and atomic, and
Ni+1 is primary overNi ∪ ai. This is possible by excellence. LetN =

⋃
i<λ Ni ≺

M . ThenN is primary overN0 ∪ {ai : i < λ}.
Let b ∈ Mλ. Then there isc ∈ N and i1 < . . . in < λ such that

tp(b/N) does not split overc. Now tp(c/N0{ai : i < λ}) is isolated by a for-
mulaφ(x, d, ai1 , . . . , ain), whered ∈ N0 andi1 < · · · < in < λ.

We claim thatI \{ai1 , . . . , ain} is indiscernible overb. Let ā, ā′ two finite
subsequences ofI \ {ai1 , . . . , ain} of the same length. Notice that

tp(ā/dai1 , . . . , ain) = tp(ā′/dai1 , . . . , ain),

sinced ∈ N0 and I is indiscernible overN0. Sincetp(c/N) is isolated over
dai1 , . . . , ain , then necessarilytp(ā/c) = tp(ā′/c). By nonsplitting, it follows
that tp(āb/∅) = tp(ā′b/∅). This shows thatI \ {ai1 , . . . , ain} is indiscernible
overb. ¤

In general, indiscernible sequences in an excellent class cannot be ex-
tended; however those obtained as above can. This gives us a way of extracting
an extensible indiscernible sequence from any uncountable set (see the proof of
categoricity for more details). We can now construct full models directly. The next
theorem is much stronger than our Hypothesis 0.4. There we assumed the exis-
tence ofsomesuitably large full model; here we show thateverymodel extends to
a full model.

Theorem 3.11.Suppose thatK is excellent. LetM ∈ K. Then there is a full model
N overM of sizeλ for anyλ ≥ ‖M‖.

Proof. Let M ∈ K be given and letλ ≥ ‖M‖. We construct an increasing and
continuous sequence of models(Mi : i < λ) such thatM0 = M , ‖Mi‖ = |i|+ℵ0,
andMi+1 realises all types inSat(Mi). This is done as in the countable case using
excellence: Having constructedMi of size at mostλ, by ω-stability, Sat(Mi) =
{pj : j < λ} (sinceK is λ-stable by Proposition 1.6). Construct an increasing and
continuous sequence of modelsM ′

j , such thatM ′
j+i is primary overM ′

jaj , andaj

realises the unique free extension ofpj overM ′
j . This is possible by stationarity

of eachpj and the fact that a primary model exists over each set of the formMa,
wherea realises a type inSat(M).

Let M =
⋃

i<λ Mi. We claim thatM is full. Let p ∈ S(C) with C ⊆ M
of size less thanλ, be stationary. Letc ∈ C, such thatp does not split overc.
Without loss of generality, we may assume thatc ∈ M0. Let I = {ai : i < λ}
be such thatai ∈ Mi+1 realisesp ¹ Mi. Theais exist by construction. Now, if
ai = aj for i < j, thenp is realised byai. Otherwise,I has sizeλ. By the previous
fact,I is an indiscernible sequence and there existsJ ⊆ I of size less thanλ, such
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thatI \ J is indiscernible overC. Thus, each element ofI \ J realisesp, sop is
realised inM . ¤

We now consider the problem of uniqueness of full models. Similarly
to the previous theorem, we could prove uniqueness of full models like Proposi-
tion 2.12 by using Theorem 3.9. Instead, we illustrate again this idea of decompos-
ing a certain problem into a larger dimensional problem involving smaller models.
For this, we definefull independent systems. We could have used this idea to con-
struct full models also.

Definition 3.12. A (λ, n)-independent system is called afull (λ, n)-independent
system ifMs is full overAs for eachs ⊂ n.

Definition 3.13. We say thatK satisfies(λ, n)-uniqueness, if there is a unique full
model overAn, for any full (λ, n)-independent system(Ms : s ⊂ n).

Lemma 3.14. If K is excellent, thenK satisfies(ℵ0, n)-uniqueness, for alln < ω.

Proof. By excellence, the set
⋃

s⊂n Ms is good, for any(ℵ0, n)-independent sys-
tem(Ms : s ⊂ n). There is a full model over it, and by Proposition 2.12, the full
model over it is unique. ¤
Proposition 3.15. Assume thatK is excellent. IfK has (µ, n) and (µ, n + 1)-
uniqueness, for eachµ < λ, thenK has(λ, n)-uniqueness.

Proof. We prove this forn = 1. Suppose thatM` is full overM0 for ` = 1, 2 and
M` ∈ K have sizeλ, andM0 is full. We must show thatM1 is isomorphic toM2

overM0.

We construct three increasing and continuous chains of models

(M i
` : i < λ),

with ‖M i
`‖ ≤ |i|+ ℵ0, such thatM` =

⋃
i<λ M i

` , for ` = 0, 1, 2 and the following
conditions hold:

(1) M i+1
0 is full overM i

0;
(2) M i

` is full overM i
0 for ` = 1, 2;

(3) M i+1
` is full overM i

` ∪M i+1
0 ;

(4) M i+1
` ∪M i+1

0 is atomic, for̀ = 1, 2;
(5) M i

` ^
M i

0

M i+1
0 , for ` = 1, 2.

This is possible: Fori = 0, to reconcile (1) and (2) with (5), we constructM0
`

for ` = 0, 1, 2 by takingω-chains of models. Choosing first the approximation to
M0,n

` ≺ M` which are full overM0,n−1
0 (for ` = 1, 2, and thenM0,n+1

0 ≺ M0 so
M0,n

` ^
M0,n+1

0

M0 andM0,n+1
0 is full. The resulting union has the desired property.
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For i a limit ordinal we define everything by continuity. The successor stage is
similar to the base case, with chains of length|i|+ℵ0 (see the proof of the existence
of full models for details).

This is enough: Notice that by(< λ, 2)-uniqueness, the modelM i+1
` is

the unique full model overM i
` ∪ M i+1

0 (for ` = 1, 2), as the relevant systems
are full. We can therefore construct an increasing and continuous sequence of
isomorphismsfi : M i

1 → M i
2, which are the identity onM i

0, inductively. The
union is the required isomorphism betweenM1 andM2 overM0.

Fori = 0, by (ℵ0, 1)-uniqueness, since bothM0
1 andM0

2 are full overM0
0 ,

there is an isomorphismf0 from M0
1 to M0

2 , which is the identity onM0
0 . At limit

stages, we definefi by continuity.

At successor stage, assume thatfi has been constructed. Letg be an el-
ementary map extendingfi, whose domain containsM i+1

1 , which is the identity
on M i+1

0 . This is possible sinceM i
1 ^
M i

0

M i+1
0 . Now g(M i+1

1 ) and M i+1
2 are

both full overM i+1
0 ∪M i

2. Hence, by(|i + 1|+ ℵ0, 2)-uniqueness,g(M i+1
1 ) and

M i+1
2 are isomorphic overM i+1

0 ∪M i
2. This isomorphism yields an isomorphism

fi+1 : M i+1
1 → M i+1

2 extendingfi which is the identity onM i+1
0 . ¤

The next theorem now follows by induction onλ for all n < ω, using
Lemma 3.14 and Proposition 3.15 just like in the proof of Theorem 3.8.

Theorem 3.16. Suppose thatK is excellent. ThenK has the(λ, n)-uniqueness
property for all cardinalsλ, andn < ω.

The next corollary is simply(λ, 0)-uniqueness:

Corollary 3.17. For each cardinalλ, there is a unique full modelM ∈ K of sizeλ.

At this point, it may be helpful to examine our Hypothesis again. We have
now shown thatC functions as a monster model; by uniqueness of full models the
class of (small) models ofK corresponds exactly to the class of (small) elementary
submodels ofC. Notice, however, that, in Section 1 and 2, we have only used its
ω-homogeneity.

We can now present Shelah’s proof of categoricity (for a Baldwin-Lachlan
style proof, see [Le3]). The strategy is as follows: There exists a full model in
every cardinality, so the model in the categoricity cardinal is full. Any two full
models of the same size are isomorphic, so if categoricity fails in some cardinal,
there exists a non full model in that cardinality, which we use to construct a non
full model in the categoricity cardinal, a contradiction.

Theorem 3.18. Let K be excellent. Suppose thatK is λ-categorical for some
uncountableλ. ThenK is µ-categorical for all uncountableµ.
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Proof. We proved that there is a unique full model up to isomorphism in each
cardinal (Theorem 3.11 and Corollary 3.16).

Assume, for a contradiction, thatµ is the first uncountable cardinal such
thatK is notµ-categorical. Thus, there existsM ∈ K of sizeµ which is not full.
Then, there is a stationaryp ∈ Sat(c) for a finitec ∈ M , andA ⊆ M of sizeκ less
thanµ, such that the unique free extensionq ∈ Sat(A) extendingp is not realised
in M .

Construct an increasing and continuous sequence of models

(Mi : i < κ+),

such thatA ⊆ M0, Mi ≺ M , Mi+1 6= Mi. Chooseai ∈ Mi+1 \Mi andbi ∈ Mi

such thattp(ai/Mi) does not split overbi, for i < κ+. By Fodor’s lemma, we
may assume that eachbi ∈ M0. Furthermore, byω-stability, we may assume that
tp(ai/M0) is constant for alli < κ+. Finally, by the pigeonhole principle, we may
assume thatbi = b ∈ M0 for all i < κ+.

We have therefore a typer ∈ Sat(b) and(ai : i < κ+) such thattp(ai/Mi)
extendsr and does not split overb. In particular,(ai : i < κ+) is an indiscernible
sequence.

We can now construct an increasing chain of countable models

(Nn : n < ω)

such thatbc ∈ N0, Nn ≺ Mn, an ∈ Nn+1 \Nn realises the nonsplitting extension
of r in Sat(Nn). We can further chooseNn soNn does not realise the typeq∗ =
q ¹ A ∩N0.

We will construct a modelNλ of sizeλ (the categoricity cardinal) which
omitsq∗. Sinceq∗ is the unique free extension of the stationary typep, and soNλ

is not full, contradicting categoricity inλ.

In order to do this, we continue(Nn : n < ω) to obtain an increasing
and continuous sequence(Ni : i < λ) of models such thatai ∈ Ni+1 realises the
unique nonsplitting extension ofr in Sat(Ni) andNi+1 is primary overNiai, for
i ≥ ω. This is possible by excellence, as there is a primary model overNiai. Let
Nλ =

⋃
i<λ Ni. ThenNλ has sizeλ and is constructible overNω ∪ {ai : i < λ}.
Supposed ∈ Nλ realisesq∗. The typetp(d/N ∪ {ai : i < λ}) |= q∗,

and is isolated overa ∪ ai1 . . . aim , with a ∈ Nn andn + 1 < i1 < . . . im < λ.
By indiscernibility of(ai : n ≤ i < λ) overNn, we may assume thati1 < · · · <
im < ω. Hence,q∗ is realised inNn+1, a contradiction. ¤

3.1. Shelah’s original approach. In the last part of this paper, we discuss She-
lah’s original approach in [Sh 48], [Sh 87a], and [Sh 87b].
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A good notion of independence, defined usingω-stability, is the main pre-
requisite before formalising excellence. In [Sh 48], Shelah obtainsω-stability from
the set-theoretic assumption thatV = L and the model-theoretic assumption thatK
is categorical inℵ1. He does this by proving the amalgamation property over count-
able models. In [Sh 87a], he weakens the set-theoretic assumption to2ℵ0 < 2ℵ1 ,
and the model-theoretic assumption to having fewer than2ℵ1 nonisomorphic mod-
els of sizeℵ1 in K. Our hypothesis on the existence ofC is the substitute for
amalgamation over countable models; it allows us to obtainω-stability from un-
countable categoricity, within ZFC, using Ehrenfeucht-Mostowski models.

In establishing that the rank induces a good independence relation, in par-
ticular for symmetry, Shelah [Sh 48] uses a many models argument to construct2ℵ1

nonisomorphic models of sizeℵ1 from theω1-order property (which follows from
the failure of symmetry without any extra assumption). Here, we useC to extend
the construction from theω1-order property to thebona fideorder property, and
we use it to contradictω-stability. Once these two ingredients are established, the
structure part stays within ZFC and uses no further model-theoretic assumption.

For the theory of excellenceper se, the reader noticed that we proved only
the casen = 2 of Theorem 3.7 (this is the only hole, as we pointed out, Proposi-
tion 3.15 is for illustrative purposes only and is not needed in proving the unique-
ness of full models). To prove this for generaln, Shelah uses the reflection prin-
ciple to give a uniform method to obtain a resolution of(< λ, n + 1)-independent
systems whose union is any given(λ, n)-independent system. Checking that all
the requirements are satisfied is then done by induction, using, among other things,
thegeneralised symmetry lemma. This lemma states that in order to check that a
system of models is independent, it is enough to check that it is independent with
respect to some enumeration (preserving the order⊂). It is a generalisation of the
idea that to check the independence of a sequence over a set, it is enough to check
that each new element in the sequence is independent from the previous elements
over the set.

In this paper, we did not address how excellence is obtained from, say,
categoricity. In [Sh 87b], Shelah shows that(ℵ0, n+1)-existence forn ≤ k follows
from the assumptions thatK is categorical inℵn and for each1 ≤ n ≤ k (assuming
that the2ℵn ’s form a strictly increasing sequence). This is done by defining a strong
negation of the(ℵ0, n)-uniqueness property implying the failure of categoricity in
ℵn+1. Hart and Shelah also showed that(ℵ0, n)-existence does not imply(ℵ0, n+
1)-existence, and that categoricity may fail atℵk+1, while holding forℵn, n ≤ k.
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