ASSIGNMENT \#36

5.7, \#1. $f(x)=x^{3}+3 x^{2}+3 x-6, f^{\prime}(x)=3 x^{2}+6 x+3=3(x+1)^{2}$. In particular, $f^{\prime}(x)$ is never negative so that $f(x)$ is increasing. Thus f has only one root r. Since $f(0)=-6, f(1)=1$, it follows that r is in the interval $(0,1)$. We start the iterative process $x_{n+1}=x_{n}-\left(f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)\right)$ with $x_{0}=1$. The truncated values for the next three x_{i} are

$$
\begin{aligned}
& 0.9166667 \\
& 0.9129384 \\
& 0.9129311
\end{aligned}
$$

A calculation shows that $f(0.9129311)>0$ and $f(0.9129300)<0$. The sign change shows that $0.9129300<r<0.9129311$. Thus 0.913 approximates r to 2 decimal places since $|0.913-r|<0.913-0.9129300<1 / 200$.
5.6, \#2. $\sqrt[3]{50}$ is a root of $f(x)=x^{3}-50$. Since $f^{\prime}(x)=3 x^{2}, f(x)$ is increasing and f has only one root r. Now $f(4)=14>0, f(3.5)=-7.125<0$, so r is in (3.5,4). We start the iterative process with $x_{0}=3.5$. The truncated values for the next three x_{i} are
3.693877
3.684057
3.684031

A calculation shows that $f(3.68406)>0$ and $f(3.68403)<0$. The sign change shows that $3.68403<r<3.68406$. Thus 3.684 approximates r to 2 decimal places since $|3.684-r|<$ $3.68406-3.684<1 / 200$.
5.6, \#6. $f(x)=\cos x-x, f^{\prime}(x)=-\sin x-1$. In particular, $f^{\prime}(x)$ is never positive. So $f(x)$ is decreasing and f has only one root r. Now $f(0)=1>0, f(1)=-0.45969 \cdots<0$, so r is in $(0,1)$. We start the iterative process with $x_{0}=1$. The truncated values for the next three x_{i} are
0.750363
0.739112
0.739085

A calculation shows that $f(0.73908)>0$ and $f(0.73911)<0$. The sign change shows that $0.73908<r<0.73911$. Thus 0.739 approximates r to 2 decimal places since $|0.739-r|<$ $0.73911-0.739<1 / 200$.

