## ASSIGNMENT \#19

3.4, \#10. Change in income $=\int_{0}^{12} r(t) d t=\int_{0}^{12} 40(1.002)^{t} d t=\$ 485.80$
3.4, \#14. Notice that each square on the graph represents $10 / 6$, or $5 / 3$ miles. At $\mathrm{t}=1 / 3$ hours, $v=0$. The area between the $v$ graph and the $t$-axis over the interval $0<t<1 / 3$ is $-\int_{0}^{1 / 3} v d t$ which is about one square or $5 / 3$ miles. At $t=1 / 3$ she is about $5-5 / 3$ or about $10 / 3$ miles from the lake. $v$ is positive on the interval $1 / 3 \leq t \leq 1$, so she is moving away from the lake on that interval. About 8 squares are between the $v$ graph and the $t$-axis. At $t=1$,

$$
\int_{0}^{1} v d t=\int_{0}^{1 / 3} v d t+\int_{1 / 3}^{1} v d t \approx-\frac{5}{3}+8 \cdot \frac{10}{6}=\frac{35}{3}
$$

and the cyclist is about $5+\frac{35}{3}=\frac{50}{3}=16 \frac{2}{3}$ miles from the lake. Since, starting from the moment $t=\frac{1}{3}$, she moves away from the lake, the cyclist will be farthest away from the lake at $t=1$. The maximal distance is $16 \frac{2}{3}$ miles.
$3.5, \# 2$.

$$
\lim _{t \rightarrow \infty} t^{3} e^{-t}=0
$$

A viewing window with $0 \leq x \leq 20$ (or larger $x$ ) and $0 \leq y \leq 2$ suggests these limits. (In fact, $t^{n} e^{-1} \rightarrow 0$ as $t \rightarrow \infty$ for any $n>0$. This expresses in another way the fact that exponential functions dominate power functions.)
3.5 , \#3.

$$
\lim _{x \rightarrow \infty} \frac{\sin x}{x}=0
$$

A viewing window with $0 \leq x \leq 20$ (or larger $x$ ) and $-2 \leq y \leq 2$ suggests these limits. It is easy to give a direct argument why the limit is 0 . The numerator $\sin x$ is always between -1 and 1 while the denominator $x$ gets arbitrarily large as $x \rightarrow \infty$.
$3.5, \# 5$. If the exponent were a fixed number, like 3 , we could bring the limit inside the expression that is raised to the exponent. However, the exponent $n$ is not fixed, but rather is going to infinity at the same time that the $1+\frac{1}{n}$ is going to one. So we cannot bring the limit inside the exponent.

Now, if we were to ask the calculator to evaluate $\left(1+\frac{1}{n}\right)^{n}$ for $n=$ say $10^{20}$, it will try to evaluate $1+\frac{1}{10^{20}}$ and it will have no choice but to round off the answer to exactly 1. Then it will take $1^{10^{20}}$, which is 1 .

