Math 165: Optimizing Average Profit

To view animations (work in progress):
http://www2.math.uic.edu/~1ewis/math165/165avgprofit.htm.

Marginal Analysis Criterion for Maximal Average Profit

Closely related to Marginal Analysis for Minimum Average Cost. Not quite the same as Marginal Analysis Criterion for Maximum Profit. Hoffmann/Bradley, p. 242

Let $P(q)$ is the total profit of producing the first q units.
Here is the graph of a typical $P(q)$.

I won't tell you a specific formula for $P(q)$. I will assume:

- The graph of $P(q)$ is smooth and concave downward.
- $P(q)=0$ has exactly two positive roots, the smallest is called the break even point.

The average profit per unit, $\operatorname{Avg} P(q)$, of producing the first q units, is

$$
\operatorname{Avg} P(q)=P(q) / q
$$

Marginal Analysis Criterion for Maximal Average Profit. Average profit per unit is maximized at the level of production where the average profit per unit equals the marginal profit; that is

$$
\operatorname{Avg} P(q)=\frac{d P}{d q}
$$

Th proof is the quotient rule for differentiation of $P(q) / q$.
Here is a graphical explanation of this criterion:
The average profit per unit at q is the slope of the line from the origin 0 to the point $(q, P(q))$.

Look at the graph for various values of q,

Use a straight edge or ruler to represent these ${ }^{q}$ lines.

As you move q to the right, the slope of the line from 0 to $(q, P(q))$ increases and then decreases. The maximum slope occurs when $q \approx 2$. At $q \approx 2$, the line from 0 to ($q, P(q)$) is tangent to the graph at $(q, P(q))$.

To view an animated picture (work in progress) go to:
http://www2.math.uic.edu/~1ewis/math165/165avgprofit.htm.

Note that the condition

$$
\frac{P(q)}{q}=\frac{d P}{d q}
$$

is the same as

$$
1=\frac{q}{P} \frac{d P}{d q} .
$$

The quantity $P_{E}=\frac{q}{P} \frac{d P}{d q}$ is the elasticity of profit with respect to output or output elasticity of profit.

