Math 165: Elasticity

If a quantity x is changed by an amount Δx, the relative change in x is the ratio $\frac{\Delta x}{x}$. The percentage change in x is $100 \frac{\Delta x}{x}$. Note that there are no units for the ratio of two quantities with the same units.

Suppose the quantity q and the price p are related, e.g., by a relation of the form $q=D(p)$,
To understand the price elasticity of demand, take the ratio

$$
\begin{aligned}
\frac{\text { relative change in } q}{\text { relative change in } p} & =\left(\frac{\Delta q}{q}\right) /\left(\frac{\Delta p}{p}\right) \\
& =\frac{p}{q} \frac{\Delta q}{\Delta p} \\
& \rightarrow \frac{p}{q} \frac{d q}{d p}
\end{aligned}
$$

as $\Delta p \rightarrow 0$. Define

$$
E(p)=\text { price elasticity of demand } \equiv \frac{p}{q} \frac{d q}{d p}
$$

Note that $\mathrm{E}(\mathrm{p})$ should be negative, and in general will depend on the value of the price p.
A practical interpretation of elasticity is that for every 1 percent increase in the price p, the demand q decreases by approximately $|E(p)|$ percent.

What is the significance of elasticity? The revenue $R=p \cdot q$, and

$$
\begin{aligned}
\frac{d R}{d p} & =1 \cdot q+p \cdot \frac{d q}{d p} \\
& =q\left(1+\frac{p}{q} \frac{d q}{d p}\right) \\
& =q(1+E(p))
\end{aligned}
$$

For $q>0$, the sign of $\frac{d R}{d p}$ is the same as the sign of $1+E(p)$.
There are three cases (Hoffmann, p. 246):

1. Elastic Demand: $|E(p)|>1,1+E(p)<0, \frac{d R}{d p}<0, R$ is decreasing with respect to p. Demand is relatively sensitive to changes in price.
2. Inelastic Demand: $|E(p)|<1,1+E(p)>0, \frac{d R}{d p}>0, R$ is increasing with respect to p. Demand is relatively insensitive to changes in price.
3. Demand is of Unit Elasticity: $|E(p)|=1,1+E(p)=0, \frac{d R}{d p}=0, R$ has a critical number at p which is a likely relative maximum. The percentage changes in price and demand are approximately equal.

Exercises Section 3.4

23. $D(p)=-1.3 p+10, p=4$.

$$
\begin{aligned}
\frac{d q}{d p} & =-1.3 \\
E(p) & =-1.3 p / q \\
\left.E(p)\right|_{p=4} & =-1.08 \\
\frac{d R}{d p} & =-2.6 p+10 \\
\left.\frac{d R}{d p}\right|_{p=4} & =-.4
\end{aligned}
$$

$|E(4)|=-0.59<1$, Inelastic Demand, R is decreasing with respect to p.
25. $D(p)=200-p^{2}, p=10$.

$$
\begin{aligned}
\frac{d q}{d p} & =-2 p \\
E(p) & =-2 p^{2} / q \\
\left.E(p)\right|_{p=10} & =-2 \\
\frac{d R}{d p} & =200-3 p^{2} \\
\left.\frac{d R}{d p}\right|_{p=10} & =-100
\end{aligned}
$$

$|E(4)|=2>1$, Elastic Demand, R is decreasing with respect to p.
40. When an electronics store prices a certain brand of stereos at p hundred dollars per set, it is found that q sets will be sold each month, where $q^{2}+2 p^{2}=41$.
a. Find the elasticity of demand for the stereos.

Using implicit differentiation, $2 q \frac{d q}{d p}+4 p=0$, so $\frac{d q}{d p}=\frac{-2 p}{q}$, and $E(p)=\frac{-2 p^{2}}{q^{2}}$.
b. For a unit price of $p=4(\$ 400)$, is the demand elastic, inelastic, or of unit elasticity? $E(4)=\frac{-2 \cdot 4^{2}}{3^{2}}$, Elastic Demand, R is decreasing with respect to p.

