MthT 430 Term Project 2006 Notes Revised

Problem 9 Remarks Revised December 6, 2006

This project should be completed by a group of not less than two nor more than four persons. The group should turn in **one** typeup of the project. The paper should include a description of each member's contributions to the project.

The project should be **typed**. For suggestions on typing, see

http://www2.math.uic.edu/~lewis/mtht430/430type.pdf

Assignment due dates:

November 22, 2006 - 6 PM: Progress Report – A note to jlewisQuic.edu on your progress on the project – include the names of the members of your group.

November 29, 2006 – 5 PM: Completed typed project due.

I. Warmup – Inequalities Again and a Useful Fact

- 1. Show that if x and y are numbers, then $x \leq y$ if and only if for every $\epsilon > 0$, $x < y + \epsilon$.
- 2. Let A be a bounded set of numbers. Define

$$-A = \{-x \mid x \in A\}.$$

Show that

$$\inf A = -\sup\left(-A\right).$$

II. Understanding sup and inf – Equivalent Definitions

It is useful to note a working characterization of sup A $(A \neq \emptyset)$:

If $A \neq \emptyset$, sup A is a number α such that

 $\begin{cases} \text{For every } x \in A, \, x \leq \alpha, \text{ and} \\ \text{For every } \epsilon > 0, \text{ there is an } x \in A \text{ such that } x > \alpha - \epsilon. \end{cases}$

The first condition means that α is an upper bound for A. The second condition means for every $\epsilon > 0$, $\alpha - \epsilon$ is not an upper bound for A.

3. Let A be a nonempty set of numbers which is bounded above. Show that

$$b = \sup A$$

if and only if for every $\epsilon>0$

$$\begin{cases} x < b + \epsilon & \text{for all } x \in A, \text{ and} \\ x > b - \epsilon & \text{for some } x \in A. \end{cases}$$

4. Let A be a nonempty set of numbers which is bounded below. Show that

$$b = \inf A$$

if and only if for every $\epsilon > 0$

$$\begin{cases} x > b - \epsilon & \text{for all } x \in A, \text{ and} \\ x < b + \epsilon & \text{for some } x \in A. \end{cases}$$

III. Adding sup and inf

5. (See Chapter 8 – Problem 13) Let A and B be two nonempty sets of numbers which are bounded (both above a nd below). Define

$$A + B = \{x \mid x = a + b, a \in A, b \in B\}.$$

Show that

$$\sup \left(A + B\right) = \sup A + \sup B.$$

Solution. If x = a + b, $a \in A$, $b \in B$, then

$$\begin{aligned} x &= a + b\\ &\leq \sup A + \sup B \end{aligned}$$

Thus $\sup A + \sup B$ is an upper bound for A + B and

$$\sup \left(A + B\right) \le \sup A + \sup B.$$

Given $\epsilon > 0$, there is an $a \in A$ such that $a > \sup A - \epsilon$, and a $b \in B$ such that $b > \sup B - \epsilon$. Then

$$\sup (A+B) \ge a+b$$
$$\ge \sup A + \sup B - 2\epsilon'$$

so that

$$\sup A + \sup B < \sup (A + B) + 2\epsilon.$$

Thus, using Problem 1,

$$\sup A + \sup B \le \sup \left(A + B\right).$$

Show that

$$\inf (A+B) = \inf A + \inf B.$$

IV. More Adding sup and inf

If f is a bounded function on [0, 1], we define

$$\sup f = \sup_{x \in [0,1]} f(x)$$
$$\inf f = \inf_{x \in [0,1]} f(x)$$

6. (Easy - see also Spivak Chapter 8 - Problem 13.) Show that if f and g are bounded functions on [0, 1], then

$$\sup\left(f+g\right) \le \sup f + \sup g.$$

Solution. The number $\sup f + \sup g$ is an upper bound for the set $\{(f + g)(x) | x \in [0, 1]\}$.

7. Give an example of a pair of bounded functions f and g on [0, 1] such that

$$\sup\left(f+g\right) < \sup f + \sup g.$$

8. Show that if f and g are bounded functions on [0, 1], then

$$\inf f + \inf g \le \inf (f + g) \,.$$

9. Show that if f and g are bounded functions on [0, 1], then

$$\inf f + \sup g \le \sup \left(f + g \right).$$

Solution 1. Fix $x \in [0, 1]$. Then

$$g(x) = (f+g)(x) - f(x)$$

$$\leq \sup (f+g) - \inf f.$$

and

$$\sup g \le \sup \left(f + g\right) - \inf f.$$

Solution 2. Given $\epsilon > 0$, there is an $x \in [0, 1]$ such that $g(x) > \sup g - \epsilon$. For this x,

$$\inf f \le f(x)$$

= $(f + g)(x) - g(x)$
 $\le \sup (f + g) - \sup g + \epsilon.$

It follows that: for every $\epsilon > 0$,

$$\inf f + \sup g \le \sup \left(f + g \right) + \epsilon.$$

Remark. Several groups tried to use the two [in]equalities

$$\inf f \le \sup f, \qquad (* - \operatorname{true})$$

$$\sup f + \sup g = \sup (f + g). \qquad (** - \operatorname{false})$$

[In]equality (**) looks like Problem 5, but was shown not always true by the counterexample in Problem 7. I think the confusion arises from the interpretation of the notation

$$\sup f = \sup_{x \in [0,1]} f(x)$$

= sup { f(x) | x \in [0,1] }.

Note that, as sets,

$$\left\{ \left(f+g \right)(x) \left| x \in [0,1] \right. \right\} \subseteq \left\{ f(x) \left| x \in [0,1] \right. \right\} + \left\{ g(x) \left| x \in [0,1] \right. \right\},$$

but equality is not always true. The right hand side is

$$\{f(x) | x \in [0,1]\} + \{g(x) | x \in [0,1]\} = \{f(x) + g(y) | x \in [0,1], y \in [0,1]\}.$$

Remark on Language. Note that

$$\{g(x) | x \in [0, 1] \} = \{g(y) | y \in [0, 1] \}$$

= $\{g(t) | t \in [0, 1] \}$
= $\{g(\diamondsuit) | \diamondsuit \in [0, 1] \}$
=

Name an internal variable $-x, y, t, \diamond, \ldots$ – and then say what it means. Similarly, with a given function f,

$$\lim_{x \to a} f(x) = \lim_{y \to a} f(y)$$
$$= \lim_{t \to a} f(t)$$
$$= \lim_{\diamondsuit \to a} f(\diamondsuit)$$
$$= \dots$$

2006projectnote.tex page 4/5

10. (Easy – See the previous problem(s).) and Show that if f and g are bounded functions on [0, 1], then

$$\inf \left(f+g\right) \le \inf f + \sup g.$$

11. (Monster Counterexample to Equality) Your group has shown: For two bounded functions f and g on [0, 1],

$$\inf f + \inf g \leq \inf (f + g)$$
$$\leq \inf f + \sup g$$
$$\leq \sup (f + g)$$
$$\leq \sup f + \sup g.$$

Give an example of a pair of bounded functions f and g on [0, 1] such that

$$\begin{split} \inf f + \inf g &< \inf (f + g) \\ &< \inf f + \sup g \\ &< \sup (f + g) \\ &< \sup f + \sup g. \end{split}$$

Monster Counterexample. Let

$$f(x) = \begin{cases} 2, & 0 \le x < 0.5, \\ 0, & 0.5 \le x \le 1. \end{cases}$$
$$g(x) = \begin{cases} 0, & 0 \le x < 0.25, \\ 1, & 0.25 \le x \le 0.75, \\ 2, & 0.75 < x \le 1. \end{cases}$$
$$f(x) + g(x) = \begin{cases} 2, & 0 \le x < 0.25, \\ 3, & 0.25 \le x < 0.5, \\ 1, & 0.5 \le x \le 0.75, \\ 2, & 0.75 < x \le 1. \end{cases}$$
$$\inf f = \inf g = 0.$$

$$\inf f = \inf g = 0,$$

$$\inf (f + g) = 1,$$

$$\sup (f + g) = 3,$$

$$\sup f = \sup g = 2.$$

N.B. The string of inequalities is related to similar inequalities regarding \limsup and \liminf in

http://www2.math.uic.edu/~lewis/mtht430/chap8fproj.pdf