MthT 430 Term Project 2007

This project should be completed by a group of not less than two nor more than four persons. The group should turn in one typeup of the project. The paper should include a description of each member's contributions to the project.

The project should be typed. For suggestions on typing, see
http://www2.math. uic.edu/~lewis/mtht430/430type.pdf
Assignment due dates:
November 21, 2007 - 6 PM: Progress Report - A note to jlewis@uic. edu on your progress on the project - include the names of the members of your group.

November 28, 2007-5 PM: Completed typed project due.

I. Warmup - Inequalities Again and a Useful Fact

1. Show that if x and y are numbers, then $x \leq y$ if and only if for every $\epsilon>0, x<y+\epsilon$.
2. Let A be a bounded set of numbers. Define

$$
-A=\{-x \mid x \in A\} .
$$

Show that

$$
\inf A=-\sup (-A) .
$$

II. Understanding sup and inf - Equivalent Definitions

It is useful to note a working characterization of $\sup A(A \neq \emptyset, \mathrm{A}$ bounded $)$:
If $A \neq \emptyset, \sup A$ is a number α such that

$$
\left\{\begin{array}{l}
\text { For every } x \in A, x \leq \alpha, \text { and } \\
\text { For every } \epsilon>0, \text { there is an } x \in A \text { such that } x>\alpha-\epsilon .
\end{array}\right.
$$

The first condition means that α is an upper bound for A. The second condition means for every $\epsilon>0, \alpha-\epsilon$ is not an upper bound for A.
3. Let A be a nonempty set of numbers which is bounded above. Show that

$$
b=\sup A
$$

if and only if for every $\epsilon>0$

$$
\begin{cases}x<b+\epsilon & \text { for all } x \in A, \text { and } \\ x>b-\epsilon & \text { for some } x \in A\end{cases}
$$

4. Let A be a nonempty set of numbers which is bounded below. Show that

$$
b=\inf A
$$

if and only if for every $\epsilon>0$

$$
\begin{cases}x>b-\epsilon & \text { for all } x \in A, \text { and } \\ x<b+\epsilon & \text { for some } x \in A .\end{cases}
$$

III. Adding sup and inf

5. (See Chapter 8 - Problem 13) Let A and B be two nonempty sets of numbers which are bounded (both above and below). Define

$$
A+B=\{x \mid x=a+b, a \in A, b \in B\}
$$

Show that

$$
\sup (A+B)=\sup A+\sup B
$$

Show that

$$
\inf (A+B)=\inf A+\inf B
$$

IV. More Adding sup and inf
(See also Spivak, Chapter 8, Problem 9.) If f is a bounded function on $[0,1]$, we define

$$
\begin{aligned}
\sup f & =\sup _{x \in[0,1]} f(x) \\
& \equiv \sup \{f(x) \mid x \in[0,1]\} \\
\inf f & =\inf _{x \in[0,1]} f(x) \\
& \equiv \inf \{f(x) \mid x \in[0,1]\}
\end{aligned}
$$

6. (Easy - but not the same as Spivak Chapter 8 - Problem 13.) Show that if f and g are bounded functions on $[0,1]$, then

$$
\sup (f+g) \leq \sup f+\sup g
$$

7. Give an example of a pair f and g of bounded functions on $[0,1]$ such that

$$
\sup (f+g)<\sup f+\sup g
$$

8. (Easy) Show that if f and g are bounded functions on $[0,1]$, then

$$
\inf f+\inf g \leq \inf (f+g)
$$

9. Show that if f and g are bounded functions on $[0,1]$, then

$$
\inf f+\sup g \leq \sup (f+g)
$$

10. Give an example of a pair f and g of bounded functions on $[0,1]$ such that

$$
\inf f+\sup g<\sup (f+g)
$$

11. (Easy - See the previous problem(s).) Show that a pair f and g are bounded functions on $[0,1]$, then

$$
\inf (f+g) \leq \inf f+\sup g
$$

12. (Monster Counterexample to Equality) Your group has shown: For a pair f and g of bounded functions on $[0,1]$,

$$
\begin{aligned}
\inf f+\inf g & \leq \inf (f+g) \\
& \leq \inf f+\sup g \\
& \leq \sup (f+g) \\
& \leq \sup f+\sup g
\end{aligned}
$$

Give an example of a pair f and g of bounded functions on $[0,1]$ such that

$$
\begin{aligned}
\inf f+\inf g & <\inf (f+g) \\
& <\inf f+\sup g \\
& <\sup (f+g) \\
& <\sup f+\sup g .
\end{aligned}
$$

N.B. The string of inequalities is related to similar inequalities regarding limsup and liminf in http://www2.math.uic.edu/~1ewis/mtht430/chap8fproj.pdf

