MthT 430 sqrt (2) is Irrational

From:

http://www.cut-the-knot.org/proofs/sq_root.shtml

Square root of 2 is irrational

Proof 6 (Statement and figure of A. Bogomolny)

If $x = 2^{1/2}$ were rational, there would exist a quantity s commensurable both with 1 and x: 1 = sn and x = sm. (It's the same as assuming that x = m/n and taking s = 1/n.) The same will be true of their difference x - 1, which is smaller than x. And the process could continue indefinitely in contradiction with the existence of a minimal element. The game Euclid might have played always ends!

JL Explanation

Definition.¹ **commensurable**: *Mathematics* Exactly divisible by the same unit an integral number of times. Used of two quantities.

If $x = \sqrt{2} = m/n$, m, n integers, after choosing s = 1/n, we have an isosceles right triangle with sides 1 = n s and hypotenuse x = m s. Now follow the Apostol program to construct an isosceles right triangle with sides (m - n) s = x - 1 and hypotenuse t s, where

$$\frac{t s}{x-1} = \frac{m s}{n s},$$
$$\frac{t}{m-n} = \frac{m}{n},$$
$$t = \frac{1}{n} (m^2 - n m)$$
$$= 2n - m.$$

Continuing we get a sequence of isosceles right triangles with sides $n_j s$ and hypotenuse $m_j s$; after at most n steps we reach a contradiction.

¹ http://www.thefreedictionary.com/commensurable

Another JL Explanation

If $x = \sqrt{2} = m/n$, after choosing s = 1/n, rescale so that we have an isosceles right triangle with integer sides n and integer hypotenuse m. Now follow the Apostol program to construct an isosceles right triangle with integer sides m - n and hypotenuse t, where

$$\frac{t}{m-n} = \frac{m}{n},$$
$$t = \frac{1}{n} (m^2 - nm)$$
$$= 2n - m.$$

Continuing we get a sequence of isosceles right triangles with integer sides and integer hypotenuse; after at most n steps we reach a contradiction.