MthT 430 sqrt (2) is Irrational

From:
http://www.cut-the-knot.org/proofs/sq_root.shtml

Square root of 2 is irrational
Proof 6 (Statement and figure of A. Bogomolny)
If $x=2^{1 / 2}$ were rational, there would exist a quantity s commensurable both with 1 and $x: 1=s n$ and $x=s m$. (It's the same as assuming that $x=m / n$ and taking $s=1 / n$.) The same will be true of their difference $x-1$, which is smaller than x. And the process could continue indefinitely in contradiction with the existence of a minimal element. The game Euclid might have played always ends!

JL Explanation

Definition. ${ }^{1}$ commensurable: Mathematics Exactly divisible by the same unit an integral number of times. Used of two quantities.

If $x=\sqrt{2}=m / n, m, n$ integers, after choosing $s=1 / n$, we have an isosceles right triangle with sides $1=n s$ and hypotenuse $x=m s$. Now follow the Apostol program to construct an isosceles right triangle with sides $(m-n) s=x-1$ and hypotenuse $t s$, where

$$
\begin{aligned}
\frac{t s}{x-1} & =\frac{m s}{n s}, \\
\frac{t}{m-n} & =\frac{m}{n}, \\
t & =\frac{1}{n}\left(m^{2}-n m\right) \\
& =2 n-m .
\end{aligned}
$$

Continuing we get a sequence of isosceles right triangles with sides $n_{j} s$ and hypotenuse $m_{j} s$; after at most n steps we reach a contradiction.

[^0]
Another JL Explanation

If $x=\sqrt{2}=m / n$, after choosing $s=1 / n$, rescale so that we have an isosceles right triangle with integer sides n and integer hypotenuse m. Now follow the Apostol program to construct an isosceles right triangle with integer sides $m-n$ and hypotenuse t, where

$$
\begin{aligned}
\frac{t}{m-n} & =\frac{m}{n}, \\
t & =\frac{1}{n}\left(m^{2}-n m\right) \\
& =2 n-m .
\end{aligned}
$$

Continuing we get a sequence of isosceles right triangles with integer sides and integer hypotenuse; after at most n steps we reach a contradiction.

[^0]: 1 http://www.thefreedictionary.com/commensurable

