MthT 491 Distributive Properties and Negative Numbers

To emphasize the important role of the distributive property in dealing with positive and negative numbers, we construct a system of Numbers, [weird] numbers, which

- satisfies all the properties of an ordered field except for the distributive property:

P9 For all a, b, c,

$$
a \text { times }(b+c)=(a \text { times } b)+(a \text { times } c)=a \text { times } b+a \text { times } c .
$$

- the product of two [weird] negative numbers is a [weird] negative number.

For the time being we will denote the numbers we are using to by Numbers. We shall list the primitive properties - that is, develop a minimal list of properties from which results can be deduced.

We shall assume there is a set Numbers, with binary operations + (plus, addition) and - (times, multiplication) defined.

We start with a Commutative Group, $(G,+)$ - a set of numbers G, with a binary operation + (plus, addition), which satisfies

Properties of +
P1 For all a, b, c, in G,

$$
a+(b+c)=(a+b)+c
$$

P2 There is a number 0 in G such that for all a,

$$
a+0=0+a=a .
$$

P3 For all a, there is a number $-a$ such that

$$
a+(-a)=(-a)+a=0 .
$$

P4 For all a, b,

$$
a+b=b+a .
$$

Examples include

- Z, the set of all integers.
- \mathbf{R}, the set of real numbers.
- Q, the set of rational numbers.
- C, the set of complex numbers.
- $\mathbf{Z}+i \mathbf{Z}$, the set of "complex integers."

Temporarily, we will assume

- G is nontrivial in the sense that there is an element $U \in G, U \neq 0$.

We now define weird multiplication, \star, on G by
For all $a, b \in G$,

$$
a \star b \equiv a+b-U
$$

Properties of \star

P5 For all a, b, c,

$$
a \star(b \star c)=(a \star b) \star c
$$

Proof.

$$
\begin{aligned}
a \star(b \star c) & =a+(b+c-U)-U \\
& =\cdots \\
& =(((a+b)-U)+c)-U \\
& =((a \star b)+c)-U \\
& =(a \star b) \star c .
\end{aligned}
$$

P6 There is a number $1 \neq 0$ such that for all a,

$$
a \star 1=1 \star a=a .
$$

Proof. Let $1 \equiv U$.

$$
\begin{aligned}
1 \star a & =U+a-U \\
& =a \\
& =a \star U .
\end{aligned}
$$

P7 For all $a \neq 0$, there is a number a^{-1} such that

$$
a \star\left(a^{-1}\right)=\left(a^{-1}\right) \star a=0 .
$$

Proof. For any a, let

$$
\begin{aligned}
a^{-1} & \equiv-a+U+U, \\
a \star a^{-1} & =a+(-a+U+U)-U \\
& =U
\end{aligned}
$$

P8 For all a, b,

$$
a \star b=b \star a .
$$

N.B. With the multiplication \star,

$$
\begin{aligned}
0 \star 0 & =0+0-U \\
& =-U \\
& \neq 0 . \\
(-U) \star(-U) & =-U-U-U .
\end{aligned}
$$

If $U \neq-U$,

$$
\begin{aligned}
-(0 \star 0) & =-(-U) \\
& =U \\
& \neq(-0) \star 0 \\
& =0 * 0 \\
& =-U .
\end{aligned}
$$

The structure $(G,+, \star)$ satisfies all the properties of a field, except the glue which relates multiplication and addition, the distributive property:

Property of • with +
P9 For all a, b, c,

$$
a \cdot(b+c)=(a \cdot b)+(a \cdot c)=a \cdot b+a \cdot c
$$

Positive Numbers and Order

Within our set of numbers, we say that a collection of numbers, P, is a positive set, or a set of positive numbers if P satisfies P10-P12:

P10 For every a, one and only one of the following holds:
(i) $a=0$,
(ii) a is in the collection P,
(iii) $-a$ is in the collection P.

P11 If a and b are in the collection P, then $a+b$ is in the collection P.
P12 If a and b are in the collection P, then the product of a and b is in the collection P. If P is a given positive set, we define inequalities or P-inequalities by:

$$
a<b\left(a<_{\mathcal{P}} b\right) \text { iff } b-a \in P .
$$

Weird Example ($Z,+, \star$)
As an example, we consider $(Z,+, \star), U=1$, the usual " 1 ". The system

- Satisfies P1 - P8.
- Does not satisfy P9. Give a counterexample!
- $0 \star 0 \neq 0$.
- There are nonzero a and b such that $a \star b=0$. Give examples.
- The set can be ordered in such a way that " 1 " is not positive.

In our example $(\mathbf{Z},+, \star)$, we take as a weird positive set

$$
\mathcal{P}_{\star}=\{-1,-2, \ldots\},
$$

the usual set of negative integers. The weird negative integers are

$$
\mathcal{N}_{\star}=\{1,2, \ldots\}
$$

the usual set of positive integers.
We have P10 (trichotomy).
Now verify P11 and P12. A typical element of \mathcal{P}_{\star} is of the form $-a$, with a a usual positive integer. If $(-a),(-b)$, are in \mathcal{P}_{\star}, then

$$
\begin{aligned}
(-a)+(-b) & =-(a+b) \in \mathcal{P}_{\star} \\
(-a) \star(-b) & =-(a+b)-1 \\
& =-(a+b+1) \in \mathcal{P}_{\star} .
\end{aligned}
$$

Here the weird product of two weird negative integers is always weird negative: For a and b weird negative, i.e., usual positive integers

$$
a \star b=a+b-1
$$

is a usual positive integer, i.e., weird negative.

More Examples

We consider the even and odd integers. We know that

$$
\begin{aligned}
\text { odd }+ \text { even } & =\text { odd }, \\
\text { even }+ \text { even } & =\text { even }, \\
\text { odd } \cdot \text { odd } & =\text { odd } \\
\text { odd } \cdot \text { even } & =\text { even. } .
\end{aligned}
$$

Thus the role of zero for addition is played by even.
We construct the addition table:

+ (plus)	odd	even
odd	even	
even		

The usual multiplication table is:

$\cdot($ times $)$	odd	even
odd		
even		

The weird multiplication table is:

$\star($ weird $)$	odd	even
odd	even	odd
even	odd	even

The role of 1 for weird multiplication is played by odd.
Note that

$$
\begin{aligned}
\text { odd } \star(\text { even }+ \text { odd }) & =\text { even } \\
(\text { odd } \star \text { even })+(\text { odd } \star \text { odd }) & =\text { odd }+ \text { even } \\
& =\text { odd }
\end{aligned}
$$

N.B. With the usual addition, there is no way to define to define a positive set which satisfies P10 and P11.

