MthT 491 Distributive Properties and Negative Numbers

To emphasize the important role of the distributive property in dealing with positive and negative numbers, we construct a system of **Numbers**, [weird] numbers, which

• satisfies all the properties of an ordered field except for the distributive property:

P9 For all a, b, c,

$$a \text{ times } (b+c) = (a \text{ times } b) + (a \text{ times } c) = a \text{ times } b+a \text{ times } c.$$

• the product of two [weird] negative numbers is a [weird] negative number.

For the time being we will denote the numbers we are using to by **Numbers**. We shall list the primitive properties – that is, develop a minimal list of properties from which results can be deduced.

We shall assume there is a set **Numbers**, with binary operations + (plus, addition) and \cdot (times, multiplication) defined.

We start with a Commutative Group, (G, +) – a set of numbers G, with a binary operation + (plus, addition), which satisfies

Properties of +

P1 For all a, b, c, in G,

$$a + (b+c) = (a+b) + c$$

P2 There is a number 0 in G such that for all a,

$$a + 0 = 0 + a = a$$
.

P3 For all a, there is a number -a such that

$$a + (-a) = (-a) + a = 0.$$

P4 For all a, b,

$$a+b=b+a$$
.

Examples include

- **Z**, the set of all integers.
- R, the set of real numbers.
- **Q**, the set of rational numbers.
- C, the set of complex numbers.
- $\mathbf{Z} + i\mathbf{Z}$, the set of "complex integers."

Temporarily, we will assume

• G is nontrivial in the sense that there is an element $U \in G$, $U \neq 0$.

We now define weird multiplication, \star , on G by

For all $a, b \in G$,

$$a \star b \equiv a + b - U$$
.

Properties of \star

P5 For all a, b, c,

$$a \star (b \star c) = (a \star b) \star c$$

Proof.

$$a \star (b \star c) = a + (b + c - U) - U$$

= ...
= $(((a + b) - U) + c) - U$
= $((a \star b) + c) - U$
= $(a \star b) \star c$.

P6 There is a number $1 \neq 0$ such that for all a,

$$a \star 1 = 1 \star a = a$$
.

Proof. Let $1 \equiv U$.

$$1 \star a = U + a - U$$
$$= a$$
$$= a \star U.$$

P7 For all $a \neq 0$, there is a number a^{-1} such that

$$a \star (a^{-1}) = (a^{-1}) \star a = 0.$$

Proof. For any a, let

$$a^{-1} \equiv -a + U + U,$$

 $a \star a^{-1} = a + (-a + U + U) - U$
 $= U$

P8 For all a, b,

$$a \star b = b \star a$$
.

N.B. With the multiplication \star ,

$$0 \star 0 = 0 + 0 - U$$

$$= -U$$

$$\neq 0.$$

$$(-U) \star (-U) = -U - U - U.$$
If $U \neq -U$,
$$-(0 \star 0) = -(-U)$$

$$= U$$

$$\neq (-0) \star 0$$

$$= 0 \star 0$$

$$= -U.$$

The structure $(G, +, \star)$ satisfies all the properties of a *field*, except the glue which relates multiplication and addition, the *distributive property*:

Property of \cdot with +

P9 For all a, b, c,

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c) = a \cdot b + a \cdot c.$$

Positive Numbers and Order

Within our set of numbers, we say that a collection of numbers, P, is a positive set, or a set of positive numbers if P satisfies P10 - P12:

P10 For every a, one and only one of the following holds:

- (i) a = 0,
- (ii) a is in the collection P,
- (iii) -a is in the collection P.

- P11 If a and b are in the collection P, then a + b is in the collection P.
- P12 If a and b are in the collection P, then the product of a and b is in the collection P.

If P is a given positive set, we define inequalities or P-inequalities by:

$$a < b (a <_{\mathcal{P}} b)$$
 iff $b - a \in P$.

Weird Example $(Z, +, \star)$

As an example, we consider $(Z, +, \star)$, U = 1, the usual "1". The system

- Satisfies P1 P8.
- Does **not** satisfy P9. Give a counterexample!
- $0 \star 0 \neq 0$.
- There are nonzero a and b such that $a \star b = 0$. Give examples.
- The set can be *ordered* in such a way that "1" is not positive.

In our example $(\mathbf{Z}, +, \star)$, we take as a weird positive set

$$\mathcal{P}_{\star} = \{-1, -2, \ldots\},\,$$

the usual set of negative integers. The weird negative integers are

$$\mathcal{N}_{\star} = \{1, 2, \ldots\},\,$$

the usual set of positive integers.

We have P10 (trichotomy).

Now verify P11 and P12. A typical element of \mathcal{P}_{\star} is of the form -a, with a a usual positive integer. If (-a), (-b), are in \mathcal{P}_{\star} , then

$$(-a) + (-b) = -(a+b) \in \mathcal{P}_{\star},$$

 $(-a) \star (-b) = -(a+b) - 1$
 $= -(a+b+1) \in \mathcal{P}_{\star}.$

Here the weird product of two weird negative integers is always weird negative: For a and b weird negative, i.e., usual positive integers

$$a \star b = a + b - 1$$

is a usual positive integer, i.e., weird negative.

More Examples

We consider the even and odd integers. We know that

$$odd + even = odd,$$

 $even + even = even,$
 $odd \cdot odd = odd,$
 $odd \cdot even = even.$

Thus the role of zero for addition is played by even.

We construct the addition table:

+ (plus)	odd	even
odd	even	
even		

The usual multiplication table is:

\cdot (times)	odd	even
odd		
even		

The weird multiplication table is:

\star (weird)	odd	even
odd	even	odd
even	odd	even

The role of 1 for weird multiplication is played by odd.

Note that

$$odd \star (even + odd) = even,$$

 $(odd \star even) + (odd \star odd) = odd + even$
 $= odd.$

N.B. With the usual addition, there is no way to define to define a *positive set* which satisfies P10 and P11.