MthT 430 Notes Chapter 10 Differentiation

The purpose of learning differentiation technique is to develop formulas for almost any function defined by a formula.

From the Chapter 5, Limit Theorems, we easily obtain for sums (differences) of differentiable functions:

Theorem 3. If f and g are differentiable at a, then $f \pm g$ is differentiable at a, and

$$
(f \pm g)^{\prime}(a)=f^{\prime}(a) \pm g^{\prime}(a)
$$

More briefly,

Theorem 3. If f and g are differentiable [on a set I], then $f \pm g$ is differentiable [on I], and

$$
(f \pm g)^{\prime}=f^{\prime} \pm g^{\prime}
$$

Product Rule for Differentiation

Theorem 4. If f and g are differentiable at a, then

$$
(f \cdot g)^{\prime}(a)=f^{\prime}(a) \cdot g(a)+f(a) \cdot g^{\prime}(a)
$$

Proof. p. 167.

The idea behind the proof: Let $\Delta_{h} f=f(a+h)-f(a)$, etc., so that

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{\Delta_{h} f}{h},
$$

etc.,

$$
\begin{aligned}
(f \cdot g)(a+h) & =\left(f(a)+\Delta_{h} f\right) \cdot\left(g(a)+\Delta_{h} g\right) \\
& =f(a) \cdot g(a)+\Delta_{h} f \cdot g(a)+f(a) \cdot \Delta_{h} g+\Delta_{h} f \cdot \Delta_{h} g \\
\Delta_{h}(f \cdot g) & =(f \cdot g)(a+h)-f(a) \cdot g(a) \\
& =\Delta_{h} f \cdot g(a)+f(a) \cdot \Delta_{h} g+\Delta_{h} f \cdot \Delta_{h} g \\
\lim _{h \rightarrow 0} \frac{\Delta_{h}(f \cdot g)}{h} & =\lim _{h \rightarrow 0} \frac{\Delta_{h} f}{h} \cdot g(a)+f(a) \cdot \lim _{h \rightarrow 0} \frac{\Delta_{h} g}{h}+\lim _{h \rightarrow 0} \frac{\Delta_{h} f}{h} \cdot \lim _{h \rightarrow 0} \Delta_{h} g \\
& =f^{\prime}(a) \cdot g(a)+f(a) \cdot g^{\prime}(a)
\end{aligned}
$$

The derivative of the $n^{\text {th }}$ power function is given by:

Theorem 6. If $f(x)=x^{n}$ for some natural number n, then

$$
f^{\prime}(a)=n a^{n-1}
$$

for all a.

Derivative of a Quotient

Theorem 7. If g is differentiable at a, and $g(a) \neq 0$, then $1 / g$ is differentiable at a, and

$$
(1 / g)^{\prime}(a)=-\frac{g^{\prime}(a)}{(g(a))^{2}}
$$

Proof. p. 167. An alternate proof is to observe that $1 / g$ is the composition of the oneover function with g and use the chain rule.

Theorem 8 (Quotient Rule). If f and g is differentiable at a, and $g(a) \neq 0$, then f / g is differentiable at a, and

$$
\left(\frac{f}{g}\right)^{\prime}(a)=\frac{g(a) \cdot f^{\prime}(a)-f(a) \cdot g^{\prime}(a)}{|g(a)|^{2}}
$$

An alternate form:

$$
\left(\frac{u}{v}\right)^{\prime}=\frac{v u^{\prime}-v^{\prime} u}{v^{2}}
$$

From an old calculus book (Robert Bonic, et al., Freshman Calculus):

$$
\begin{aligned}
\left(\frac{u}{v}\right)^{\prime} & : \frac{\left(\text { write vinculum over } v^{2}\right)}{v^{2}} \\
& \rightarrow \frac{v}{v^{2}} \\
& \rightarrow \frac{v u^{\prime}-v^{\prime} u}{v^{2}}
\end{aligned} \quad \text { (write } v \text { again before you forget) }
$$

Some prefer the forms:

$$
\begin{align*}
\left(\frac{u}{v}\right)^{\prime} & =\left\{u \cdot\left(\frac{1}{v}\right)\right\}^{\prime} \\
& =\frac{u^{\prime}}{v}-u \cdot\left(\frac{v^{\prime}}{v^{2}}\right) \\
\left(u v^{-1}\right)^{\prime} & =u^{\prime} v^{-1}+(-1) u v^{\prime} v^{-2}
\end{align*}
$$

The form ($\boldsymbol{\&}$) is particularly convenient for repeated derivatives.

Chain Rule

Theorem 9 (Chain Rule). If g is differentiable at a, and f is differentiable at $g(a)$, then $f \circ g$ is differentiable at a and

$$
(f \circ g)^{\prime}(a)=f^{\prime}(g(a)) \cdot g^{\prime}(a) .
$$

Other forms of the Chain Rule

Leibniz notation:

$$
\begin{aligned}
y & =y(u) \\
\frac{d y}{d x} & =\frac{d y}{d u} \frac{d u}{d x}
\end{aligned}
$$

Leibniz (mixed) notation:

$$
\frac{d f(u(x))}{d x}=f^{\prime}(u(x)) \cdot \frac{d u}{d x} .
$$

Function notation:

$$
(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) \cdot g^{\prime}
$$

One layer at a time:

$$
\begin{array}{rlr}
\frac{d f(\odot(\ldots))}{d x}: & f^{\prime}(\quad) & \text { (deriv of outside function } f \text {) } \\
& \rightarrow f^{\prime}(\bigcirc(\ldots)) & \text { (evaluate at inside function) } \\
& \rightarrow f^{\prime}(\bigcirc(\ldots)) \cdot & \text { (TIMES) } \\
& \rightarrow f^{\prime}(\bigcirc(\ldots)) \cdot\left(\frac{d(\Upsilon(\ldots))}{d x}\right) & \text { (deriv of inside) } \\
& & \text { (do it again if necessary) }
\end{array}
$$

