MthT 430 Chapter 10a Projects - Derivatives

In Class November 28, 2007

1. Let $F(x)$ be a function such that

- $\operatorname{domain}(F)=\mathbf{R}$.
- For all $x, y, F(x+y)=F(x) \cdot F(y)$.
- $F(0) \neq 0$.
- F is differentiable at 0 and $F^{\prime}(0)=\pi$.

Show that, for every a, F is differentiable at a and find a formula for $F^{\prime}(x)$. Here formula is an expression in terms of F or a familiar function.
2. Let $G(x)$ be a function such that

- domain $(G)=\mathbf{R}^{+} \equiv\{x \mid x>0\}$.
- For all $x, y>0, G(x \cdot y)=G(x)+G(y)$.
- $G(1)=0$.
- G is differentiable at 1 and $G^{\prime}(1)=1$.

Show that, for every $a>0, G$ is differentiable at a, and find a formula for $G^{\prime}(x), x>0$. Here formula is an expression in terms of G or a familiar function.
3. Let E be a function such that

- E is differentiable for all x,
- E is an even function.

Show that

- E^{\prime} is an odd function,
- $E^{\prime}(0)=0$.

4. S and C are functions such that

- For all x, S and C are differentiable,
- $S^{\prime}=\pi C$ (for all $\left.x, S^{\prime}(x)=\pi C(x)\right), C^{\prime}=-\pi S$.
- $S(0)=0, C(0)=\pi$.

Find a formula for $S^{(n)}(0), n=0,1,2, \ldots$

