MthT 430 Notes Chapter 11 Significance of the Derivative

Maximum Point on a set A

Definition. Let f be a function and A a set of numbers contained in the domain of f. A point x in A is a maximum point for f on A if

$$
f(x) \geq f(y) \text { for every } y \text { in } A
$$

The number $f(x)$ itself is called the maximum value of f on A.
N.B. Several texts are inconsistent in distinguishing the value, x, the value of the function, $f(x)$, and the point, $(x, f(x))$, on the graph.

The basic relation between the maximum point for f on an open interval and the derivative is given in Theorem 1.

Theorem 1. Let f be any function defined on (a, b). If x is a maximum point for f on (a, b), and f is differentiable at x, then $f^{\prime}(x)=0$.

Definition. Let f be a function and A a set of numbers contained in the domain of $f . A$ point x in A is a local [relative] maximum point for f on A if there is some $\delta>0$ such that x is a maximum point for f on $A \cap(x-\delta, x+\delta)$.

$$
f(x) \geq f(y) \text { for every } y \text { in } A \cap(x-\delta, x+\delta)
$$

A less technical statement is that $f(x) \geq f(y)$ for all nearby points y in A.

Definition. A critical point of a function f is a number x such that

$$
f^{\prime}(x)=0
$$

The number $f(x)$ is called a critical value of f.
N.B. Once again there is often inconsistency in referring to $x, f(x)$, and the point $(x, f(x))$ on the graph.

To locate the maximum point of f on a closed interval $[a, b]$, we need only look at

- critical points of f in $[a, b]$ (usually a small number),
- end points a and b,
- points x in $[a, b]$ such that f is not differentiable (which should be obvious).

Rolle's Theorem. If f is continuous on $[a, b]$ and differentiable on (a, b), and $f(a)=f(b)$, then there is an x in (a, b) such that $f^{\prime}(x)=0$.

Proof. If f is constant on $[a, b]$, then $f^{\prime}(x)=0$ for all x in (a, b). If f is not constant on $[a, b]$, then there is a maximum point or minimum point x for f on (a, b). At such a point, by Theorem $1, f^{\prime}(x)=0$.

Applying Rolle's Theorem to various functions, we obtain several important results.

Mean Value Theorem. If f is continuous on $[a, b]$ and differentiable on (a, b), , then there is an x in (a, b) such that

$$
f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}
$$

Proof. Let

$$
g(x)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)
$$

the secant line through $(a, f(a))$ and $(b, f(b))$. Then

$$
F(x)=f(x)-g(x)
$$

satisfies the hypotheses of Rolle's Theorem. There is an x in (a, b) such that

$$
\begin{aligned}
F^{\prime}(x) & =f^{\prime}(x)-\frac{f(b)-f(a)}{b-a} \\
& =0
\end{aligned}
$$

We could not resist the proof of a version of L'Hôpital's Rule.

Cauchy's Mean Value Theorem. If f and g are continuous on $[a, b]$, and differentiable on (a, b), then there is an x in (a, b) such that

$$
[f(b)-f(a)] g^{\prime}(x)=[g(b)-g(a)] f^{\prime}(x)
$$

Proof. Apply Rolle's Theorem to

$$
H(x)=[f(b)-f(a)](g(x)-g(a))-[g(b)-g(a)](f(x)-f(a))
$$

Theorem 9 (L'ÔPITAL'S RULE). Suppose that

$$
\lim _{x \rightarrow a} f(x)=0, \text { and } \lim _{x \rightarrow a} g(x)=0
$$

Suppose that

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} \text { exists. } \tag{*}
\end{equation*}
$$

Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)} \text { exists, }
$$

and

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Proof. Without loss of generality, assume that $f(a)=g(a)=0$. Using $(*)$, notice that there is a $\delta>0$ such that, for $0<|x-a|<\delta, g^{\prime}(x) \neq 0$ for $0<|x-a|<\delta$. By the Mean Value Theorem, for $0<|x-a|<\delta, g(x) \neq 0$. Fix x. By the Cauchy Mean Value Theorem, there is a c_{x} (which depends on x) between a and x such that

$$
\begin{align*}
& f(x) g^{\prime}\left(c_{x}\right)=g(x) f^{\prime}\left(c_{x}\right) \\
& f(x) g^{\prime}\left(c_{x}\right)=g(x) f^{\prime}\left(c_{x}\right)
\end{align*}
$$

Dividing (\dagger) by $g(x)(\neq 0!)$ and $g^{\prime}\left(c_{x}\right)$, we obtain

$$
\frac{f(x)}{g(x)}=\frac{f^{\prime}\left(c_{x}\right)}{g^{\prime}\left(c_{x}\right)}
$$

As $x \rightarrow a, c_{x} \rightarrow a$, so that

$$
\begin{aligned}
\lim _{x \rightarrow a} \frac{f(x)}{g(x)} & =\lim _{x \rightarrow a} \frac{f^{\prime}\left(c_{x}\right)}{g^{\prime}\left(c_{x}\right)} \\
& =\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
\end{aligned}
$$

