MthT 430 Notes Chapter 1a More on Basic Properties of Numbers

Properties (P1) - (P9) give the following Theorems:

Theorem. Assuming P1 - P9, for all $a, a \cdot 0 = 0$.

The proof is given on page 7 of Spivak's book.

Proof.

$$a \cdot 0 = a \cdot (0+0)$$

= $a \cdot 0 + a \cdot 0.$ (P9)

Now subtract $a \cdot 0$ from both sides of the equation

 $a \cdot 0 = a \cdot 0 + a \cdot 0.$

Theorem. If

then either

$$a = 0 \text{ or } b = 0$$

 $a \cdot b = 0,$

Proof. If $a \neq 0$ and $a \cdot b = 0$, then

$$a^{-1} \cdot (a \cdot b) = a^{-1} \cdot 0,$$
$$(a^{-1} \cdot a) \cdot b = 0,$$
$$1 \cdot b = 0,$$
$$b = 0.$$

Similarly, if $b \neq 0$, then a = 0.

Theorem.

$$a(a \cdot b) = (-a) \cdot b$$

= $a \cdot (-b)$.

Proof. We will show that

$$(a \cdot b) + (-a) \cdot b = 0.$$

$$(a \cdot b) + (-a) \cdot b = (a + (-a)) \cdot b \qquad (by P9)$$

$$0 \cdot b$$
 (by P3)

$$= 0$$
 (by Theorem).

The characterization of $-(a \cdot b)$ as a $\cdot (-b)$ is shown by repeating the proof or interchanging the roles of a and b and using (P8).

=

chap1a.pdf page 1/4

Inequalities

Inequalities are defined in terms of the positive numbers P. We say that a > 0 or 0 < a if a is in P. We that a < b [b > a] if 0 < b - a or b - a is in P.

Note that

- If a < b, then for all c, a + c < b + c.
- If a < b, and 0 < c, then ac < bc.
- If a < b, and c < 0, then ac > bc.

We shall also say that a is nonnegative $[a \ge 0]$ if and only if a = 0 or a > 0.

- For all a, a^2 is nonnegative.
- If a and b are nonnegative, then $a \le b$ iff $a^2 \le b^2$.

Absolute Value

Definition. The absolute value of a number a is defined as

$$|a| = \begin{cases} a, & a \ge 0\\ -a, & a \le 0. \end{cases}$$

Properties of absolute value often involve a proof by cases.

Theorem. For all a,

$$-|a| \le a \le |a|.$$

Also

$$-|a| \le -a \le |a|.$$

Proof. If $a \ge 0$, then |a| = a, and

$$-|a| \le 0 \le a = |a|.$$

If $a \leq 0$, then -|a| = a, and

$$-|a| = a \le 0 \le |a|.$$

The second statement is shown in a similar manner, or by multiplying each expression in the first statement by -1.

Theorem. (The triangle inequality) For all numbers a, b,

$$|a+b| \le |a|+|b|.$$

Proof. We have

$$\begin{aligned} -|a| &\le a \le |a|, \\ -|b| &\le b \le |b|, \end{aligned}$$

so that

$$-(|a|+|b|) \le a+b \le |a|+|b|.$$

Now break into the two cases $a + b \ge 0$ and $a + b \le 0$.

Another Proof. Since |a + b| and |a| + |b| are both nonnegative, compare $|a + b|^2$ and $(|a| + |b|)^2$.

$$|a+b|^{2} = (a+b)^{2}$$

= $a^{2} + 2ab + b^{2}$,
 $(|a|+|b|)^{2} = a^{2} + 2|a||b| + b^{2}$.

We know(?) that |ab| = |a| |b| so that

$$2ab \le 2 |a| |b|,$$

 $|a+b|^2 \le (|a|+|b|)^2.$

Fractions

For this section assume (P1) - (P9).

If $b \neq 0$, we define

$$\frac{1}{b} \equiv b^{-1},$$
$$\frac{a}{b} \equiv a \cdot b^{-1}$$
$$= a \cdot \frac{1}{b}.$$

Of course we hope that for $b \neq 0, d \neq 0$,

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}.$$

Theorem. For $b \neq 0$, $d \neq 0$,

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}.$$

Proof. We show that

$$(ad + bc) \cdot (bd)^{-1} = ab^{-1} + cd^{-1}.$$

$$(ad + bc) \cdot (bd)^{-1} = (ad + bc) \cdot d^{-1}b^{-1} \qquad \text{why?}$$

$$= a \cdot d \cdot d^{-1} \cdot b^{-1} + b \cdot c \cdot d^{-1} \cdot b^{-1} \qquad \text{by P9}$$

$$= a \cdot 1 \cdot b^{-1} + 1 \cdot c \cdot d^{-1} \qquad \text{by P8 and P7}$$

$$= ab^{-1} + cd^{-1}.$$
 by P9