MthT 430 Notes Chapter 1a More on Basic Properties of Numbers

Properties (P1) - (P9) give the following Theorems:

Theorem. Assuming P1-P9, for all $a, a \cdot 0=0$.

The proof is given on page 7 of Spivak's book.
Proof.

$$
\begin{align*}
a \cdot 0 & =a \cdot(0+0) \\
& =a \cdot 0+a \cdot 0 . \tag{P9}
\end{align*}
$$

Now subtract $a \cdot 0$ from both sides of the equation

$$
a \cdot 0=a \cdot 0+a \cdot 0
$$

Theorem. If

$$
a \cdot b=0
$$

then either

$$
a=0 \text { or } b=0 .
$$

Proof. If $a \neq 0$ and $a \cdot b=0$, then

$$
\begin{aligned}
a^{-1} \cdot(a \cdot b) & =a^{-1} \cdot 0, \\
\left(a^{-1} \cdot a\right) \cdot b & =0, \\
1 \cdot b & =0, \\
b & =0 .
\end{aligned}
$$

Similarly, if $b \neq 0$, then $a=0$.

Theorem.

$$
\begin{aligned}
-(a \cdot b) & =(-a) \cdot b \\
& =a \cdot(-b) .
\end{aligned}
$$

Proof. We will show that

$$
\begin{align*}
&(a \cdot b)+(-a) \cdot b=0 \\
&(a \cdot b)+(-a) \cdot b=(a+(-a)) \cdot b \tag{byP9}\\
&=0 \cdot b \\
&=0
\end{align*}
$$

(by Theorem).
The characterization of $-(a \cdot b)$ as a $\cdot(-b)$ is shown by repeating the proof or interchanging the roles of a and b and using (P8).

Inequalities

Inequalities are defined in terms of of the positive numbers P. We say that $a>0$ or $0<a$ if a is in P. We that $a<b[b>a]$ if $0<b-a$ or $b-a$ is in P.

Note that

- If $a<b$, then for all $c, a+c<b+c$.
- If $a<b$, and $0<c$, then $a c<b c$.
- If $a<b$, and $c<0$, then $a c>b c$.

We shall also say that a is nonnegative $[a \geq 0]$ if and only if $a=0$ or $a>0$.

- For all a, a^{2} is nonnegative.
- If a and b are nonnegative, then $a \leq b$ iff $a^{2} \leq b^{2}$.

Absolute Value

Definition. The absolute value of a number a is defined as

$$
|a|= \begin{cases}a, & a \geq 0 \\ -a, & a \leq 0\end{cases}
$$

Properties of absolute value often involve a proof by cases.

Theorem. For all a,

$$
-|a| \leq a \leq|a|
$$

Also

$$
-|a| \leq-a \leq|a|
$$

Proof. If $a \geq 0$, then $|a|=a$, and

$$
-|a| \leq 0 \leq a=|a|
$$

If $a \leq 0$, then $-|a|=a$, and

$$
-|a|=a \leq 0 \leq|a|
$$

The second statement is shown in a similar manner, or by multiplying each expression in the first statement by -1 .

Theorem. (The triangle inequality) For all numbers a, b,

$$
|a+b| \leq|a|+|b|
$$

Proof. We have

$$
\begin{aligned}
& -|a| \leq a \leq|a| \\
& -|b| \leq b \leq|b|
\end{aligned}
$$

so that

$$
-(|a|+|b|) \leq a+b \leq|a|+|b| .
$$

Now break into the two cases $a+b \geq 0$ and $a+b \leq 0$.
Another Proof. Since $|a+b|$ and $|a|+|b|$ are both nonnegative, compare $|a+b|^{2}$ and $(|a|+|b|)^{2}$.

$$
\begin{aligned}
|a+b|^{2} & =(a+b)^{2} \\
& =a^{2}+2 a b+b^{2}, \\
(|a|+|b|)^{2} & =a^{2}+2|a||b|+b^{2} .
\end{aligned}
$$

We know(?) that $|a b|=|a||b|$ so that

$$
\begin{aligned}
2 a b & \leq 2|a||b| \\
|a+b|^{2} & \leq(|a|+|b|)^{2}
\end{aligned}
$$

Fractions

For this section assume (P1) - (P9).

If $b \neq 0$, we define

$$
\begin{aligned}
\frac{1}{b} & \equiv b^{-1} \\
\frac{a}{b} & \equiv a \cdot b^{-1} \\
& =a \cdot \frac{1}{b}
\end{aligned}
$$

Of course we hope that for $b \neq 0, d \neq 0$,

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} .
$$

Theorem. For $b \neq 0, d \neq 0$,

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}
$$

Proof. We show that

$$
\begin{aligned}
(a d+b c) \cdot(b d)^{-1} & =a b^{-1}+c d^{-1} \\
(a d+b c) \cdot(b d)^{-1} & =(a d+b c) \cdot d^{-1} b^{-1} \\
& =a \cdot d \cdot d^{-1} \cdot b^{-1}+b \cdot c \cdot d^{-1} \cdot b^{-1} \\
& =a \cdot 1 \cdot b^{-1}+1 \cdot c \cdot d^{-1} \\
& =a b^{-1}+c d^{-1}
\end{aligned}
$$

why?
by P9
by P8 and P7
by P9

