MthT 430 Chapter 2a Numbers of Various Sorts

Natural numbers \mathbf{N}

We denote by \mathbf{N} the set of counting numbers

$$
1,2,3, \ldots
$$

The natural numbers (counting numbers, positive integers) \mathbf{N} satisfy the Principle of Mathematical Induction: (PMI):

If A is a subset of \mathbf{N} such that

$$
\left\{\begin{array}{l}
1 \in A \\
\text { Whenever } k \in A, k+1 \in A
\end{array}\right.
$$

then

$$
A=\mathbf{N} .
$$

PMI is also stated as
Suppose $P(n)$ is a statement for each natural number n. If

$$
\left\{\begin{array}{l}
P(1) \text { is true, } \\
\text { Whenever } P(k) \text { is true, } P(k+1) \text { is true. }
\end{array}\right.
$$

then

$$
P(n) \text { is true for all } n \in \mathbf{N} \text {. }
$$

PMI is used :

- Proving formulas such as

$$
1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

- Recursive definitions:

$$
\left\{\begin{array}{l}
1!=1 \\
n!=n \cdot(n-1)!, \quad n>1 .
\end{array}\right.
$$

There are two statements which are equivalent to PMI.

- Well Ordering Principle (WOP): Every nonempty subset A of \mathbf{N} has a least element - a number $a \in A$ such that $a \leq x$ for all $x \in A$.
- Principle of Complete Induction (PCI):

If A is a subset of \mathbf{N} such that

$$
\left\{\begin{array}{l}
1 \in A, \\
\text { Whenever } 1, \ldots, k \in A, k+1 \in A,
\end{array}\right.
$$

then

$$
A=\mathbf{N}
$$

Integers Z and Rational Numbers Q

The natural numbers \mathbf{N} seem to satisfy

- P1 (addition is associative) Yes
- P2 (zero) No
- P3 (additive inverse) No
- P4 (commutative addition) Yes
- P5 (multiplication is associative) Yes
- P6 (one) Yes
- P7 (multiplicative inverse) No
- P8 (commutative multiplication) Yes
- P9 (distributive) Yes

The positive set $P=\mathbf{N}$ satisfies

- P10 (trichotomy) Yes
- P11 $(P+P \subset P)$ Yes
- P12 $(P \cdot P \subset P)$ Yes

By adjoining 0 and the negative integers, with some effort we can recover P2 and P3. For the integers, \mathbf{Z}, the positive set which satisfies $\mathrm{P} 10, \mathrm{P} 11$, and P 12 is still \mathbf{N}.

The rational numbers, \mathbf{Q}, are objects of the form $\frac{p}{q}, p, q$ integers, $q \neq 0$. The set P of positive rational numbers is ... (left to the reader).

The Rationals are not All Real Numbers

We shall rely on the following fact outlined in Chapter 2, Problem 17:
Every natural number n satisfies one and only one of the following

$$
\left\{\begin{array}{l}
n=1 \\
n \text { is a prime number }, \\
n=a b, a, b \in \mathbf{N}, 1<a, b<n
\end{array}\right.
$$

The definition of a prime number is given in Chapter 2, Problem 17.

Definition. A natural number p is called a prime number if it is impossible to write $p=a b$ for natural numbers a and b unless one of these is p and the other 1 . For convenience, we also agree that 1 is not a prime number.

Theorem. Every natural number $n>1$ can be written as a product of primes. The factorization is unique except for the order of the factors (not proved here).

Thus every (positive) rational number r can be written as

$$
r=\frac{p}{q},
$$

where p and q are 1 or are are written as products of primes with no common factors.

Theorem. There is no rational number r such that

$$
r^{2}=2 .
$$

Proof: If $r^{2}=2$, write $r=\frac{p}{q}$, where p and q are 1 or are written as products of primes with no common factors. Then

$$
\begin{aligned}
\left(\frac{p}{q}\right)^{2} & =2 \\
p^{2} & =2 q^{2}
\end{aligned}
$$

so that 2 is a factor of p^{2} and p. Thus $p=2 k$ and $2 q^{2}=4 k^{2}$ so that 2 is a factor of q^{2} and q also.

Remark: The prove of the above theorem is an example of proof by contradiction. What is the contradiction? The statement
p and q are 1 or are written as products of primes with no common factors of 2 . is both true and not true.

A real number which is not a rational number is called an irrational number.
N. B. There is an argument (Spivak, Chapter 2, Prob. 17) which shows that

Theorem. Suppose that $M>1, t>1$, are natural numbers. Then the $t^{\text {th }}$ root of M,

$$
\sqrt[t]{M}
$$

is irrational unless $M=p^{t}$ for some natural number p.

Theorem. Suppose that p, q, t, M are natural numbers such that $M>1, p$ and q have no common factor and

$$
\left(\frac{p}{q}\right)^{t}=M
$$

Then

$$
M=p^{t}
$$

Proofs by Induction

We wish to prove that a statement [proposition] $P(n)$ is true for all $n . P(n)$ may be a sentence, formula, property,

A good proof by PMI requires:

- State precisely and unambiguously $P(n)$.
- Prove the base case: $P(1)$ is true. This step usually requires only a close look at the meaning of the statement " $P(1)$ is true."
- The induction step: $P(k)$ implies $P(k+1)$.
- Write down and assume $P(k)$.
- Perform any valid operations to arrive at $P(k+1)$. It may help to say "We are to show that $P(k+1)$ (write it down!) is true." Remember that you are free to use valid operations on $P(k)$ and even $P(1), \ldots, P(k)$.

