MthT 430 Notes Chapter 2b Induction etc.

Proofs by Mathematical Induction

PMI is also stated as
Suppose $P(n)$ is a statement for each natural number n. If

$$
\left\{\begin{array}{l}
P(1) \text { is true, } \\
\text { Whenever } P(k) \text { is true, } P(k+1) \text { is true. }
\end{array}\right.
$$

then

$$
P(n) \text { is true for all } n \in \mathbf{N} \text {. }
$$

A proof using PMI requires:

- Carefully stating the proposition or statement $P(k)$, which may be a sentence (paragraph) or equation, inequality, ..., which depends on k.
- Proving that $P(1)$ is true - usually a simple verification.
- Assume $P(k)^{1}$ - write down the statement or formula $P(k)$:
- Assume ... (statement or formula which depends on k).
- Apply valid operations (theorems, add to both sides of an equation, etc.) ... Remember that $P(1)$ is valid too. Try to arrive at $P(k+1)$ as a statement or equation.

Examples

1. Prove the formula

$$
1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

- $P(n)$ is the sentence

$$
1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

What is the verb of the sentence?
1 As a variant, assume that $P(1), \ldots, P(k)$, are true and use PCI.

- $P(1)$ is true means to verify the statement

$$
1^{2}=\frac{1(1+1)(2 \cdot 1+1)}{6}
$$

- $P(n)$ is true implies $P(n+1)$ is true means to assume

$$
1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

and to show that

$$
1^{2}+2^{2}+\ldots+n^{2}+(n+1)^{2}=\frac{(n+1)((n+1)+1)(2(n+1)+1)}{6}
$$

The valid operations are adding $(n+1)^{2}$ to both sides of the equation $P(n)$ and various algebraic manipulations.
2. Tower of Hanoi

- $P(n)$ is the statement:
- n rings can be moved from one spindle to another with $2^{n}-1$ moves, and no fewer.

Other manageable forms of $P(n)$ are

- The minimal number of moves to move n rings from one spindle to another is $2^{n}-1$.
- It takes $2^{n}-1$ moves to move n rings from one spindle to another.
- $P(1)$ is easy.
- $P(n)$ is true implies $P(n+1)$ is true means to assume n rings can be moved from one spindle to another with $2^{n}-1$ moves, and no fewer, and to show that $n+1$ rings can be moved from one spindle to another with $2^{n+1}-1$ moves, and no fewer.

In this case, the valid operations are a precise sequence of moves to move the $n+1$ rings - the top n rings are moved using $P(n)$, the bottom ring is moved and then the top rings are moved a second time using $P(n)$.

More on the Tower of Hanoi

Let $M(k)$ be the minimal number of moves.

- $P(k): M(k)=2^{k}-1$.
- Verify $P(1): M(1)=2^{1}-1=1$.

Move the single ring from 1 to 3 .

- Assume $P(k): M(k)=2^{k}-1$.

Now let there be $k+1$ rings be stacked on pole 1 . The bottom ring can be moved only to an empty pole. So the bottom ring can be moved from Pole 1 to Pole 3 iff Pole 3 is empty! Therefore moving the bottom ring from Pole 1 [2] to Pole 3 requires that the top k rings be stacked on Pole $2[1]$ - this operation requires $M(k)=2^{k}-1$ moves. So the minimal number of moves for $k+1$ rings is determined by the following valid operations:

1. Move the top k rings from Pole 1 to Pole 2 using $M(k)$ moves,
2. Move the bottom ring from Pole 1 to Pole 3 in 1 move,
3. Move the k rings from Pole 2 to Pole 3 using $M(k)$ moves.

The strategy is minimal since moving the bottom ring from Pole 1 to Pole 3 requires at least $M(k)+1$ moves.

Then, using $P(k), M(k+1)=M(k)+1+M(k)=\ldots=2^{k+1}-1$.
We have actually constructed the sequence $M(k), k=1,2, \ldots$, by recursion,

$$
\begin{aligned}
M(1) & =1 \\
M(k+1) & =2 M(k)+1, k=1,2, \ldots .
\end{aligned}
$$

Real Numbers and Binary Expansions

The real numbers in \mathbf{R} are identified with points on a horizontal line. For the time being, we will identify a real number x with a decimal expansion.

- Every decimal expansion represents a real number x :

$$
\begin{aligned}
x & = \pm N . d_{1} d_{2} \ldots \\
d_{k} & \in\{0,1, \ldots, 9\} .
\end{aligned}
$$

This is the statement that every infinite series of the form

$$
d_{1} 10^{-1}+d_{2} 10^{-2}+\ldots, \quad d_{k} \in\{0,1, \ldots, 9\}
$$

converges.
Just as well we could identify a real number x with a binary expansion.

- Every binary expansion represents a real number x :

$$
\begin{aligned}
x & = \pm N \cdot \cdot_{\text {bin }} b_{1} b_{2} \ldots, \\
b_{k} & \in\{0,1\} .
\end{aligned}
$$

This is the statement that every infinite series of the form

$$
b_{1} 2^{-1}+b_{2} 2^{-2}+\ldots, \quad b_{k} \in\{0,1\}
$$

converges.

Construction of the Binary Expansion by Recursion

A demonstration of a construction of the the binary expansion of a real number x on the line, $0 \leq x<1$, will be presented in class.

