MthT 430 Chapter 2b Projects

In class September 12, 2007, Turn in September 19, 2007

Rational and Irrational Numbers

1. Prove that $\sqrt{3}$ is irrational.
2. Let the set of numbers $\mathbf{Q}_{\sqrt{3}}$ consist all the real numbers, x, of the form

$$
x=p+q \sqrt{3}
$$

where p and q are rational numbers.

- Prove that if $x=p+q \sqrt{3}$, where p and q are rational numbers, then

$$
\begin{aligned}
x^{-1} & =\frac{1}{p+q \sqrt{3}} \\
& =a+b \sqrt{3}
\end{aligned}
$$

for some rational a and b.

- Prove that if $x=p+q \sqrt{3}$ where p and q are rational numbers, and m is a natural number, then $x^{m}=a+b \sqrt{3}$ for some rational a and b.

Remark: One can show that $\mathbf{Q}_{\sqrt{3}}$ satisfies P1-P12; more briefly: $\mathbf{Q}_{\sqrt{3}}$ is an ordered field.

Cauchy - Schwartz Inequality

3. Prove by mathematical induction or otherwise:

$$
\left(\sum_{j=1}^{m} x_{j} y_{j}\right)^{2} \leq\left(\sum_{j=1}^{m} x_{j}^{2}\right) \cdot\left(\sum_{j=1}^{m} y_{j}^{2}\right)
$$

