MthT 430 Notes Chapter 4a Graphs

Real Numbers and Points on a Line

The real numbers in \mathbf{R} are identified with points on a horizontal line. For the time being, we will identify a real number x with a decimal expansion.

- Every decimal expansion represents a real number x :

$$
\begin{aligned}
x & = \pm N . d_{1} d_{2} \ldots \\
d_{k} & \in\{0,1, \ldots, 9\}
\end{aligned}
$$

This is the statement that every infinite series of the form

$$
d_{1} 10^{-1}+d_{2} 10^{-2}+\ldots, \quad d_{k} \in\{0,1, \ldots, 9\}
$$

converges.
Just as well we could identify a real number x with a binary expansion.

- Every binary expansion represents a real number x :

$$
\begin{aligned}
x & = \pm N \cdot \cdot_{\cdot \operatorname{bin}} b_{1} b_{2} \ldots, \\
b_{k} & \in\{0,1\} .
\end{aligned}
$$

This is the statement that every infinite series of the form

$$
b_{1} 2^{-1}+b_{2} 2^{-2}+\ldots, \quad b_{k} \in\{0,1\}
$$

converges.

A demonstration of a correspondence between the binary expansion and a point on a horizontal line was given in class. See also

```
chap4b.pdf
```


Intervals

- $(a, b) \equiv\{x \mid a<x<b\}$ is the open interval from a to b. Usually it is assumed that a is less than b. If $b<a$, then $(a, b)=\emptyset$, the empty interval.
- $[a, b] \equiv\{x \mid a \leq x \leq b\}$ is the closed interval from a to b. Usually it is assumed that a is less than or equal b. If $b<a$, then $[a, b]=\emptyset$, the empty interval.

The "points" $-\infty$ and ∞ are introduced so that we have

- $(a, \infty) \equiv\{x \mid a<x\}$ is the open interval from a to ∞.
- $(-\infty, b] \equiv\{x \mid x \leq b\}$ is the closed interval from $-\infty$ to b.
- $(-\infty, \infty) \equiv \ldots$

In graphing an interval, whether an endpoint is included or not is usually indicated by explicitly drawing the point or placing a (,), [,], •, or \circ at the indicated coordinate.

See the examples in Spivak, pp. 50 ff .

Note the equations (formulas) for lines.
If the function is defined on the closed interval between two points points $x, x+\Delta x$, let

$$
\Delta f(x)=f(x+\Delta x)-f(x) .
$$

Qualitative properties of graphs to be observed on intervals are

- Continuity (to be defined precisely in Chapter 5) - $\Delta f(x)$ is small if Δx is small. Note particular points where the function is not defined or is not continuous
- Monotonicity - increasing or decreasing on particular intervals - $\Delta f(x)$ is of constant sign for all $x, x+\Delta x$ in the interval with $\Delta x>0$
- Concavity on particular intervals - for equal $\Delta x, \Delta f(x)$ is increasing/decreasing as x increases in the interval.

Examples

- Figure 20:

$$
f(x)=\sin \left(\frac{1}{x}\right)
$$

With our convention, domain $(f)=\{x \neq 0\}$. The intervals of increase and decrease are evident, concavity is not quite so clear.

- The function sinxoverx:

$$
\operatorname{sinxoverx}(x)= \begin{cases}\frac{\sin (x)}{x}, & x \neq 0 \\ \text { undefined, } & x=0\end{cases}
$$

- The function Siprime:

$$
\operatorname{Siprime}(x)= \begin{cases}\frac{\sin (x)}{x}, & x \neq 0 \\ 1, & x=0\end{cases}
$$

The function $\operatorname{Siprime}(x)$ is an extension of the function sinxoverx, and is continuous at $x=0$. At $x=0$, for Δx small about $\neq 0$,

$$
\begin{aligned}
\Delta \text { Siprime } & =\operatorname{Siprime}(\Delta x)-\operatorname{Siprime}(0) \\
& =\frac{\sin (\Delta x)}{\Delta x}-1 \\
& =\frac{\mid \text { small line } \mid}{\mid \text { small arc } \mid}-1 \\
& =\text { small }- \text { draw a picture. }
\end{aligned}
$$

Here is the picture for the above calculation:

Here is the plot of $\sin \left(\frac{1}{x}\right)$ on $[-2 \pi, 2 \pi]$

Here is the plot of $\operatorname{Siprime}(t)$ on $[-2 \pi, 2 \pi]$

Here is another picture which shows that

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

Note that, for $x>0, \sin (x)<x<\tan (x)$.

