MthT 430 Notes Chapter 5a Limits

Notation

The expression

$$
\lim _{x \rightarrow a} f(x)=L
$$

is read

- The limit of f at $x=a$ is L.
- The limit as x approaches a of $f(x)$ is L.
- The limit of $f(x)$ is L as x approaches a.
- $f(x)$ approaches L as x approaches a.
- The function f approaches the limit L near a (Note: no mention of x).
- (Briefer - p. 99) f approaches L near a.

Meaning

The meaning of the phrase is

Provisional Definition. (p. 90) The function f approaches the limit L near a, if we can make $f(x)$ as close as we like to L by requiring that x be sufficiently close to (but \neq) a.

- (Somewhat Informal) The function f approaches the limit L near a, if $f(x)-L$ is small whenever $x-a$ is small enough (but $x \neq a$).
- (Different Words - Somewhat Informal) The function f approaches the limit L near a, if $f(x)=L+$ small whenever $x=a+$ small enough (but $x \neq a$).
- (Informal) The function f approaches the limit L near a, if $f(x)$ is close to L whenever x is close enough to (but \neq) a.
- (Explanation of Provisional) You tell me how close you want $f(x)$ to be to L and I will tell you how close x needs to be to a to force $f(x)$ to be as close to L as you requested.
- (Explanation of Different Words - Somewhat Informal) $f(x)=L+$ small means that size of $f(x)-L$ is small in the sense that, $f(x)-L$ is as small as we like (whether $\left..1, .00001,10^{-100}, \ldots\right)$, by imposing that $|x-a|$ is small enough (but $\neq 0$). How small is small enough for $x-a$ depends on how small we require $f(x)-L$ to be.
- (More Explanation of Provisional JL) Given a positive size [number] ϵ, there is a positive
size [number] δ such that if the size of $x-a$ is less than δ (but not 0 , then the size of $f(x)-L$ is less than ϵ. Here the size of a number is its absolute value.

Definition of Limit

Definition. (p.96) The function f approaches the limit L near a means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Different Words. (p. 96) The function f approaches the limit L near a means: For every desired degree of closeness $\epsilon>0$, there is a degree of closeness $\delta>0$ such that, for all $x \neq a$, if $x-a$ is within δ of a, then $f(x)$ is within ϵ of L.

The phrase α is within ϵ of β means: $|\alpha-\beta|<\epsilon$.

Change of Notation. The function f approaches the limit L near a means: For every $\boldsymbol{\&}>0$, there is some $\odot>0$ such that, for all $\boldsymbol{\uparrow}$, if $0<|\boldsymbol{\phi}-a|<\Omega$, then $|f(\boldsymbol{\uparrow})-L|<\boldsymbol{\phi}$.

Fundamental Properties of Limits

Theorem 1. The limit is unique. If f approaches L near a, and f approaches M near a, then $L=M$.

Informal Proof: For x near enough to $a, f(x)$ is very close to both L and M. By the triangle inequality,

$$
\begin{aligned}
|L-M| & =|(L-f(x))+(f(x)-M)| \\
& \leq|L-f(x)|+|f(x)-M| \\
& =\text { small }+ \text { small } \\
& =\text { small. }
\end{aligned}
$$

Thus for $x-a$ small enough, $|L-M|$ is as small as desired. Conclude $L=M$.

Fact. A number $Y=0$ iff for very $\epsilon>0,|Y|<\epsilon$.
Proof: (Text, p. 98.)

Theorem 2. If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, then

$$
\begin{aligned}
\lim _{x \rightarrow a}(f+g)(x) & =L+M \\
\lim _{x \rightarrow a}(f \cdot g)(x) & =L \cdot M
\end{aligned}
$$

If $M \neq 0$, then

$$
\lim _{x \rightarrow a}\left(\frac{1}{g}\right)(x)=\frac{1}{M}
$$

Proof. See Spivak, Problems 1.20 ff .
Discussion before the proof: Let's do the result for products. We can make (how? by requiring $x-a$ to be small enough (and $\neq 0) f(x)=L+\operatorname{small}_{f}$ and $g(x)=M+\operatorname{small}_{g}$. Then for $x=a+$ small enough, $x \neq a$,

$$
\begin{aligned}
f(x) \cdot g(x) & =\left(L+\operatorname{small}_{f}\right) \cdot\left(M+\operatorname{small}_{g}\right) \\
& =L \cdot M+\operatorname{small}_{f} \cdot M+L \cdot \operatorname{small}_{g}+\operatorname{small}_{f} \cdot \operatorname{small}_{g} \\
& =L \cdot M+\text { Remainder } .
\end{aligned}
$$

Now it is evident that Remainder can be made as small as we like by requiring $|x-a|$ sufficiently small (but $\neq 0$).

The Proof: Given $\epsilon>0$, we have

$$
|f(x) \cdot g(x)-L \cdot M|=\left|\operatorname{small}_{f} \cdot M+L \cdot \operatorname{small}_{g}+\operatorname{small}_{f} \cdot \operatorname{small}_{g}\right|
$$

where small ${ }_{f}=f(x)-L$, small $_{g}=g(x)-M$. Now choose $\delta>0$ so that whenever $0<|x-a|<\delta$,

$$
\begin{gathered}
\left|\operatorname{small}_{f}\right|=|f(x)-L|<\epsilon, \\
\mid \text { small }_{g}|=|g(x)-M|<\epsilon .
\end{gathered}
$$

Then whenever $0<|x-a|<\delta$,

$$
\begin{align*}
|f(x) \cdot g(x)-L \cdot M| & =\left|\operatorname{small}_{f} \cdot M+L \cdot \operatorname{small}_{g}+\operatorname{small}_{f} \cdot \operatorname{small}_{g}\right| \\
& \leq|\epsilon \cdot M|+|\epsilon \cdot L|+\epsilon^{2} \tag{*}
\end{align*}
$$

Now if we also assume that $\epsilon<1$, we have that

$$
(*) \leq \epsilon \cdot(|M|+|L|+1),
$$

and it is evident that $|f(x)-L|$ can be made as small as desired. There are a couple of ways:

- Choose the δ that works for $\hat{\epsilon}=\frac{\epsilon}{(|M|+|L|+1)}>0$.
- Use a modified equivalent definition of limit: The function f approaches the limit L near a means: There is an $\epsilon_{0}>0$ and a $K>0$ such that: For every $\epsilon, \epsilon_{0}>\epsilon>0$, there is a $\delta>0$ such that, for all x, if $0<|x-a|<\delta$, then $|f(x)-L|<K \cdot \epsilon$.

Notes

- Given $\epsilon>0$, the δ such that $0<|x-a|<\delta$ assures $|f(x)-L|<\epsilon$ usually depends on ϵ, as well as depending on the point a and function f and all of its properties. Finding an explicit expression for the optimal δ is not required nor necessarily interesting unless doing numerical error estimates.
- In the product and quotient example, the $\delta=\delta_{\epsilon}$ was chosen with the additional requirement that $\epsilon<1$.
- Pay attention to the domain of the function. See the technical detail on p. 102.
- Observe the definitions of one sided limits - also called limits from above [below] and limits from the left [right].

Thinking About Limits

Definition. (Actual, p. 96)

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Definition - Working JL II.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means:

- For all $x=a+$ smallenufneq0, x is in $\operatorname{domain} f$.
- $f(x)=L+$ assmallasdesired, for $x=a+$ smallenufneq0.

Translation:

- assmallasdesired means, given $\epsilon>0$, then |assmallasdesired $\mid<\epsilon$ is the desired result.
- smallenufneq0 means, find a $\delta>0$ such that $0<\mid$ smallenufneq $0 \mid<\delta$ is the sufficient condition.
- smallenuf means, find a $\delta>0$ such that \mid smallenufneq $0 \mid<\delta$ is the sufficient condition.

Definition - Working JL II'.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means:

- For $|x-a|$ smallenufneq0, x is in domain f.
- $f(x)-L$ is assmallasdesired, for $x-a$ is smallenufneq0.

