MthT 430 Notes Chapter 5a Limits

Notation

The expression

$$\lim_{x \to a} f(x) = L$$

is read

- The limit of f at x = a is L.
- The limit as x approaches a of f(x) is L.
- The limit of f(x) is L as x approaches a.
- f(x) approaches L as x approaches a.
- The function f approaches the limit L near a (Note: no mention of x).
- (Briefer p. 99) f approaches L near a.

Meaning

The meaning of the phrase is

Provisional Definition. (p. 90) The function f approaches the limit L near a, if we can make f(x) as close as we like to L by requiring that x be sufficiently close to (but \neq) a.

- (Somewhat Informal) The function f approaches the limit L near a, if f(x) L is small whenever x a is small enough (but $x \neq a$).
- (Different Words Somewhat Informal) The function f approaches the limit L near a, if f(x) = L + small whenever x = a + small enough (but $x \neq a$).
- (Informal) The function f approaches the limit L near a, if f(x) is close to L whenever x is close enough to (but \neq) a.
- (Explanation of Provisional) You tell me how close you want f(x) to be to L and I will tell you how close x needs to be to a to force f(x) to be as close to L as you requested.
- (Explanation of Different Words Somewhat Informal) f(x) = L + small means that size of f(x) L is small in the sense that, f(x) L is as small as we like (whether .1, .00001, $10^{-100}, \ldots$), by imposing that |x a| is small enough (but $\neq 0$). How small is small enough for x a depends on how small we require f(x) L to be.
- (More Explanation of Provisional JL) Given a positive size [number] ϵ , there is a positive

size [number] δ such that if the size of x - a is less than δ (but not 0, then the size of f(x) - L is less than ϵ . Here the *size* of a number is its absolute value.

Definition of Limit

Definition. (p. 96) The function f approaches the limit L near a means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$.

Different Words. (p. 96) The function f approaches the limit L near a means: For every desired degree of closeness $\epsilon > 0$, there is a degree of closeness $\delta > 0$ such that, for all $x \neq a$, if x - a is within δ of a, then f(x) is within ϵ of L.

The phrase α is within ϵ of β means: $|\alpha - \beta| < \epsilon$.

Change of Notation. The function f approaches the limit L near a means: For every $\clubsuit > 0$, there is some $\heartsuit > 0$ such that, for all \blacklozenge , if $0 < |\diamondsuit - a| < \heartsuit$, then $|f(\diamondsuit) - L| < \clubsuit$.

Fundamental Properties of Limits

Theorem 1. The limit is unique. If f approaches L near a, and f approaches M near a, then L = M.

Informal Proof: For x near enough to a, f(x) is very close to both L and M. By the triangle inequality,

$$|L - M| = |(L - f(x)) + (f(x) - M)|$$

$$\leq |L - f(x)| + |f(x) - M|$$

$$= \text{small} + \text{small}$$

$$= \text{small.}$$

Thus for x - a small enough, |L - M| is as small as desired. Conclude L = M.

Fact. A number Y = 0 iff for very $\epsilon > 0$, $|Y| < \epsilon$.

Proof: (Text, p. 98.)

Theorem 2. If $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$, then

$$\lim_{x \to a} (f + g) (x) = L + M,$$
$$\lim_{x \to a} (f \cdot g) (x) = L \cdot M.$$

If $M \neq 0$, then

$$\lim_{x \to a} \left(\frac{1}{g}\right)(x) = \frac{1}{M}.$$

Proof. See Spivak, Problems 1.20 ff.

Discussion before the proof: Let's do the result for products. We can make (how? – by requiring x - a to be small enough (and $\neq 0$) $f(x) = L + \text{small}_f$ and $g(x) = M + \text{small}_g$. Then for x = a + small enough, $x \neq a$,

$$f(x) \cdot g(x) = (L + \operatorname{small}_f) \cdot (M + \operatorname{small}_g)$$

= $L \cdot M + \operatorname{small}_f \cdot M + L \cdot \operatorname{small}_g + \operatorname{small}_f \cdot \operatorname{small}_g$
= $L \cdot M + \operatorname{Remainder}$.

Now it is evident that Remainder can be made as small as we like by requiring |x - a| sufficiently small (but $\neq 0$).

The Proof: Given $\epsilon > 0$, we have

$$|f(x) \cdot g(x) - L \cdot M| = |\operatorname{small}_f \cdot M + L \cdot \operatorname{small}_g + \operatorname{small}_f \cdot \operatorname{small}_g|,$$

where small_f = f(x) - L, small_g = g(x) - M. Now choose $\delta > 0$ so that whenever $0 < |x - a| < \delta$,

$$|\operatorname{small}_{f}| = |f(x) - L| < \epsilon,$$

$$|\operatorname{small}_{g}| = |g(x) - M| < \epsilon.$$

Then whenever $0 < |x - a| < \delta$,

$$|f(x) \cdot g(x) - L \cdot M| = |\operatorname{small}_{f} \cdot M + L \cdot \operatorname{small}_{g} + \operatorname{small}_{f} \cdot \operatorname{small}_{g}|,$$

$$\leq |\epsilon \cdot M| + |\epsilon \cdot L| + \epsilon^{2}. \tag{*}$$

Now if we also assume that $\epsilon < 1$, we have that

$$(*) \leq \epsilon \cdot \left(|M| + |L| + 1 \right),$$

and it is evident that |f(x) - L| can be made as small as desired. There are a couple of ways:

- Choose the δ that works for $\hat{\epsilon} = \frac{\epsilon}{(|M| + |L| + 1)} > 0.$
- Use a modified equivalent definition of limit: The function f approaches the limit L near a means: There is an $\epsilon_0 > 0$ and a K > 0 such that : For every $\epsilon, \epsilon_0 > \epsilon > 0$, there is a $\delta > 0$ such that, for all x, if $0 < |x a| < \delta$, then $|f(x) L| < K \cdot \epsilon$.

Notes

- Given $\epsilon > 0$, the δ such that $0 < |x a| < \delta$ assures $|f(x) L| < \epsilon$ usually depends on ϵ , as well as depending on the point a and function f and all of its properties. Finding an explicit expression for the *optimal* δ is not required nor necessarily interesting unless doing numerical error estimates.
- In the product and quotient example, the $\delta = \delta_{\epsilon}$ was chosen with the additional requirement that $\epsilon < 1$.
- Pay attention to the domain of the function. See the *technical detail* on p. 102.
- Observe the definitions of one sided limits also called limits from above [below] and limits from the left [right].

Thinking About Limits

Definition. (Actual, p. 96)

$$\lim_{x \to \infty} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$.

Definition - Working JL II.

$$\lim_{x \to a} f(x) = L$$

means:

- For all x = a + smallenufneq0, x is in domain f.
- f(x) = L + assmallas desired, for x = a + smallenufneq0.

Translation:

- assmallasdesired means, given $\epsilon > 0$, then |assmallasdesired| $< \epsilon$ is the desired result.
- smallenufneq0 means, find a $\delta > 0$ such that $0 < |\text{smallenufneq0}| < \delta$ is the sufficient condition.
- smallenuf means, find a $\delta > 0$ such that $|\text{smallenufneq}0| < \delta$ is the sufficient condition.

Definition - Working JL II'.

$$\lim_{x \to a} f(x) = L$$

means:

- For |x a| smallenufneq0, x is in domain f.
- f(x) L is assmallasdesired, for x a is smallenufneq0.