Limits – Definitions (sic)

Definition. (Actual, p. 96)

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $0 < |x-a| < \delta$, then $|f(x) - L| < \epsilon$.

Some Correct and Incorrect Variations

Decide which, if any, of the Definitions A–N are equivalent to the *actual* definition of

$$\lim_{x \to a} f(x) = L$$

Definition A.

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $0 < |x-a| < \delta$, then $|f(x) - L| < \epsilon$.

Definition B.

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that for some x, if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$.

Definition C.

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that for some $x, 0 < |x - a| < \delta, |f(x) - L| < \epsilon$.

Definition D.

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $|x - a| < \delta$, then $|f(x) - L| < \epsilon$.

Definition E.

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $|f(x) - L| < \epsilon$, then $0 < |x - a| < \delta$.

Definition F.

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that $|f(x) - L| < \epsilon$, and $0 < |x - a| < \delta$.

Definition G.

$$\lim_{x \to a} f(x) = L$$

means: For every $\delta > 0$, there is some $\epsilon > 0$ such that, for all x, if $0 < |x-a| < \epsilon$, then $|f(x) - L| < \delta$.

Definition H.

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $0 < |x-a| < \epsilon$, then $|f(x) - L| < \delta$.

Definition I.

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, $\delta > 0$, $0 < |x - a| < \delta$, $|f(x) - L| < \epsilon$.

Definition J.

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $0 < |x-a| < \delta$, then $|f(x) - L| < 20\epsilon$.

Definition K.

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $0 < |x - a| < 20\delta$, then $|f(x) - L| < \epsilon$.

Definition L.

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $0 < |x - a| < 10^{-6}\delta$, then $|f(x) - L| < 10^{6}\epsilon$.

Definition M.

$$\lim_{x \to a} f(x) = L$$

means: There is a number M such that for every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $0 < |x - a| < 20\delta$, then $|f(x) - L| < M\epsilon$.

Definition N.

$$\lim_{x \to a} f(x) = L$$

means: There is a number M such that for every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $0 < |x - a| < \delta/M$, then $|f(x) - L| < M\epsilon$.

Definition 10^6 .

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $0 < |x - a| < 10^6 \delta$, then $|f(x) - L| < \epsilon$.

 $10^6 \Rightarrow$ Actual: Fix $\epsilon > 0$. By 10^6 , there is an $\delta > 0$ such that, for all x, if $0 < |x - a| < 10^6 \delta$, then $|f(x) - L| < \epsilon$. If $0 < |x - a| < \delta$, then $0 < |x - a| < 10^6 \delta$, so $|f(x) - L| < \epsilon$.

Actual $\Rightarrow 10^6$: Fix $\epsilon > 0$. By Actual, there is an $\eta > 0$ such that, for all x, if $0 < |x - a| < \eta$, then $|f(x) - L| < \epsilon$. Let $\delta = 10^{-6}\eta$. Then $\delta > 0$ iff $\eta > 0$. For all x, if $0 < |x - a| < 10^6\delta = \eta$, $|f(x) - L| < \epsilon$.

From actual student papers:

Definition St1.

$$\lim_{x \to a} f(x) = L$$

 $\lim_{x \to a} f(x) = L$

means: For every $\epsilon > \delta$, the limit of f(x) as x goes to a is L.

Definition St2.

means: There exists a $\delta > 0$ and $\epsilon > 0$ such that $|x - a| < \delta$ and $|f(x) - L| < \epsilon$.

Definition St3.

means:
$$\label{eq:general} \begin{split} & \lim_{x\to a} f(x) = L \\ & \lim_{x\to a} f(x) = f(a). \end{split}$$

Therefore f(a) = L.

Definition St4.

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $0 < |x-a| < \delta$, then $|f(x) - L| < \epsilon$.

Definition St5.

$$\lim_{x \to a} f(x) = L$$

means: There exists some $\epsilon > 0$ such that $|x - a| = \delta \delta > 0$ as $|\epsilon - \delta|$ gets "small" f(x) = L.

Definition St6.

$$\lim_{x \to a} f(x) = L$$

means: There exists a $f(\epsilon) \leq f(a) \leq f(\delta)$ for some ϵ, δ in the domain of f(x). I don't remember!!

Definition S6.

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $0 < |x-a| < \delta$, then $|f(x) - L| < \epsilon$.

Definition St7.

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there exist $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|f(x) - f(a)| < \epsilon$.

Definition St8.

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if 0 < |x-a| < 0, then $|f(x) - L| < \epsilon$.

Definition St9.

$$\lim_{x \to a} f(x) = L$$

means: Given an $\epsilon > 0$, but otherwise as small as we like, we can find that $\delta > 0$ such that $0 < |x - a| < \delta$, given $|f(x) - L| < \epsilon$.

Definition St10.

$$\lim_{x \to a} f(x) = L$$

means: The limit of a function as it approaches a.

Definition St11.

$$\lim_{x \to a} f(x) = L$$

means: If f(x) is within ϵ of L is within δ of a. So the closer we desire our f(x) to be to L the smaller we must choose an δ , until it is clear that f(x) approaches L as x approaches a.

Definition St12.

$$\lim_{x \to a} f(x) = L$$

means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $0 < |x-a| < \delta$, then $|f(x) - L| < \epsilon$.

Definition St13.

$$\lim_{x \to a} f(x) = L$$

means: A continuous function has a limit at a if $|f(x) - f(a)| < \epsilon$, $\epsilon > 0$ when $|x - a| < \delta$ for some $\delta > 0$ and the limit L = f(a).