MthT 430 Projects Chapter 5b Limits - Equivalent Definitions (sic)

Limits - Definitions (sic)

Definition. (Actual, p. 96)

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Some Correct and Incorrect Variations

Decide which, if any, of the Definitions A-N are equivalent to the actual definition of

$$
\lim _{x \rightarrow a} f(x)=L
$$

Definition A.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Definition B.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that for some x, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Definition C.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that for some $x, 0<|x-a|<\delta,|f(x)-L|<\epsilon$.

Definition D.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Definition E.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $|f(x)-L|<\epsilon$, then $0<|x-a|<$ δ.

Definition F.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that $|f(x)-L|<\epsilon$, and $0<|x-a|<\delta$.

Definition G.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\delta>0$, there is some $\epsilon>0$ such that, for all x, if $0<|x-a|<\epsilon$, then $|f(x)-L|<\delta$.

Definition H.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<\epsilon$, then $|f(x)-L|<\delta$.

Definition I.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0, \delta>0,0<|x-a|<\delta,|f(x)-L|<\epsilon$.

Definition J.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<\delta$, then $|f(x)-L|<20 \epsilon$.

Definition K.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<20 \delta$, then $|f(x)-L|<\epsilon$.

Definition L.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<10^{-6} \delta$, then $|f(x)-L|<10^{6} \epsilon$.

Definition M.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: There is a number M such that for every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<20 \delta$, then $|f(x)-L|<M \epsilon$.

Definition N.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: There is a number M such that for every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<\delta / M$, then $|f(x)-L|<M \epsilon$.

Definition 10^{6}.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<10^{6} \delta$, then $|f(x)-L|<\epsilon$.
$10^{6} \Rightarrow$ Actual: Fix $\epsilon>0$. By 10^{6}, there is an $\delta>0$ such that, for all x, if $0<|x-a|<10^{6} \delta$, then $|f(x)-L|<\epsilon$. If $0<|x-a|<\delta$, then $0<|x-a|<10^{6} \delta$, so $|f(x)-L|<\epsilon$.

Actual $\Rightarrow 10^{6}$: Fix $\epsilon>0$. By Actual, there is an $\eta>0$ such that, for all x, if $0<|x-a|<\eta$, then $|f(x)-L|<\epsilon$. Let $\delta=10^{-6} \eta$. Then $\delta>0$ iff $\eta>0$. For all x, if $0<|x-a|<10^{6} \delta=\eta$, $|f(x)-L|<\epsilon$.

From actual student papers:

Definition St1.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>\delta$, the limit of $f(x)$ as x goes to a is L.

Definition St2.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: There exists a $\delta>0$ and $\epsilon>0$ such that $|x-a|<\delta$ and $|f(x)-L|<\epsilon$.

Definition St3.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means:

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

Therefore $f(a)=L$.

Definition St4.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Definition St5.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: There exists some $\epsilon>0$ such that $|x-a|=\delta \delta>0$ as $|\epsilon-\delta|$ gets "small" $f(x)=L$.

Definition St6.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: There exists a $f(\epsilon) \leq f(a) \leq f(\delta)$ for some ϵ, δ in the domain of $f(x)$. I don't remember!!

Definition S6.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Definition St7.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there exist $\delta>0$ such that if $0<|x-a|<\delta$, then $|f(x)-f(a)|<\epsilon$.

Definition St8.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<0$, then $|f(x)-L|<\epsilon$.

Definition St9.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: Given an $\epsilon>0$, but otherwise as small as we like, we can find that $\delta>0$ such that $0<|x-a|<\delta$, given $|f(x)-L|<\epsilon$.

Definition St10.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: The limit of a function as it approaches a.

Definition St11.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: If $f(x)$ is within ϵ of L is within δ of a. So the closer we desire our $f(x)$ to be to L the smaller we must choose an δ, until it is clear that $f(x)$ approaches L as x approaches a.

Definition St12.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Definition St13.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: A continuous function has a limit at a if $|f(x)-f(a)|<\epsilon, \epsilon>0$ when $|x-a|<\delta$ for some $\delta>0$ and the limit $L=f(a)$.

