MthT 430 Notes Chapter 5c Graphical Binary Expansion Arguments

Binary Expansion Arguments

Consider the following problem:

1. Let $f(x)$ be a function such that

- $\operatorname{domain} f=[0,1)$.
- For all $x($ in $[0,1)), 0 \leq f(x)<1$.
- The function f is increasing on $[0,1)$.

Show that there is a number $L, 0 \leq L \leq 1$, such that

$$
\lim _{x \rightarrow 1^{-}} f(x)=L
$$

Hint: Construct a binary expansion for L.
A picture is helpful!

To find the expansion for L, ask the question:
Is there an $x \in[0,1)$ such that $f(x) \geq \frac{1}{2}=0$.bin 1 ?

If NO, let $x_{1}=0, b_{1}=0, s_{1}=0 \cdot \cdot \operatorname{bin} b_{1}$. If YES, let $x_{1}=x, b_{1}=1, s_{1}=0 \cdot \operatorname{bin} b_{1}=0 \cdot$ bin 1 . In both cases, for $x_{1} \leq x<1, s_{1} \leq f\left(x_{1}\right) \leq f(x) \leq s_{1}+\frac{1}{2}$.

Next divide the interval $\left[s_{1}, s_{1}+\frac{1}{2}\right)$ into two parts $\left[0 \cdot{ }_{\cdot \operatorname{bin}} b_{1} 0,0 \cdot{ }_{\cdot \operatorname{bin}} b_{1} 1\right)$ and $\left[0 \cdot{ }_{\cdot \operatorname{bin}} b_{1} 1, s_{1}+\frac{1}{2}\right)$.

Ask the question:
Is there an $x \in\left[x_{1}, 1\right)$ such that $f(x) \geq s_{1}+\frac{1}{2^{2}}=0 \cdot \operatorname{bin} b_{1} 1 ?^{1}$
If NO, let $x_{2}=x_{1}, b_{2}=0, s_{2}=0 \cdot{ }_{\cdot \operatorname{bin}} b_{1} b_{2} .{ }^{2}$ If YES, let $x_{2}=x, b_{1}=1, s_{2}=0 \cdot{ }_{\text {bin }} b_{1} b_{2}=$ $s_{1}+\frac{1}{2^{2}}$. Then for $x_{2} \leq x<1, s_{2} \leq f\left(x_{2}\right) \leq f(x) \leq s_{2}+\frac{1}{2^{2}}$.

1 Thinking about this later, I noticed that $s_{1}+\frac{1}{2^{2}}$ is the midpoint of the new interval under consideration.
${ }^{2}$ In this case $x_{2}=x_{1}$ and $s_{2}=s_{1}$.

If $x_{1}, \ldots, x_{n}, b_{1}, \ldots b_{n}, s_{n}=0 \cdot{ }_{\cdot \operatorname{bin}} b_{1} \ldots b_{n}$ have been constructed so that for $x_{n} \leq x<1$, $s_{n} \leq f\left(x_{n}\right) \leq f(x) \leq s_{n}+\frac{1}{2^{n}}$,

Ask the question: Is there an $x \in\left[x_{n}, 1\right)$ such that $f\left(x_{n+1}\right) \geq s_{n}+\frac{1}{2^{n+1}}=0 \cdot{ }_{\cdot \operatorname{bin}} b_{1} \ldots b_{n} 1$? Then let

$$
\begin{aligned}
x_{n+1} & = \begin{cases}x_{n}, & \text { NO, } \\
x, & \text { YES },\end{cases} \\
b_{n+1} & = \begin{cases}0, & \text { NO, } \\
1, & \text { YES },\end{cases} \\
s_{n+1} & =0 \cdot \operatorname{bin}^{b_{1} b_{2} \ldots b_{n+1}} \\
& =b_{1} \cdot 2^{-1}+b_{2} \cdot 2^{-2}+\ldots+b_{n+1} \cdot 2^{-(n+1)}
\end{aligned}
$$

For $x_{n+1} \leq x<1, \quad s_{n+1} \leq f\left(x_{n+1}\right) \leq f(x) \leq s_{n+1}+\frac{1}{2^{n+1}}$.
Then

$$
L=0 . b_{1} b_{2} \ldots b_{n} \ldots=\lim _{n \rightarrow \infty} s_{n}
$$

since for all x, if $x_{n} \leq x<1$,

$$
s_{n} \leq f(x) \leq L \leq s_{n}+\frac{1}{2^{n}}
$$

and

$$
0 \leq L-f(x)<\frac{1}{2^{n}}
$$

