MthT 430 Notes Chapter 5d Sequences and Limits

Sequences Cf. Spivak Chapter 22.

Definition. An infinite sequence is a function whose domain is \mathbf{N}.

As a convention, we also allow the domain of a sequence to be a subset of \mathbf{N} which includes all natural numbers sufficiently large.

Notation

If a is the name of the sequence, instead of listing the particular values by

$$
a(1), a(2), \ldots,
$$

we almost always use the subscript notation

$$
a_{1}, a_{2}, \ldots
$$

We denote the sequence by

$$
\left\{a_{n}\right\}
$$

Limits of sequences

Definition. A sequence $\left\{a_{n}\right\}$ converges to L (in symbols $\lim _{n \rightarrow \infty} a_{n}=L$) iff for every $\epsilon>0$, there is a natural number N such that, for all natural numbers n,

$$
\text { if } n>N \text {, then }\left|a_{n}-L\right|<\epsilon .
$$

A sequence $\left\{a_{n}\right\}$ is said to converge if it converges to L for some [finite!] number L, and to diverge if it does not converge.

Compare

- For a function f whose domain includes all x sufficiently large and positive,

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

- For a sequence $\left\{a_{n}\right\}$, whose domain includes all n sufficiently large and positive,

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

