MthT 430 Notes Chapter 5 Equivalent Definitions

What is a definition?
From http://mw1.merriam-webster.com/dictionary/definition
Definition of definition - Merriam-Webster Online Dictionary
Main Entry: definition
Function: noun
1: an act of determining ...
2a: a statement expressing the essential nature of something
2b: a statement of the meaning of a word or word group or a sign or symbol <dictionary definitions>

Statement 2b seems most appropriate for mathematics.
Think of a Definition as being able to interchange

- [Definition] Term ${ }^{1}$ (What is being defined)
- [Definition] Description (Details)

Equivalent Definitions of Limit

Definition. (Actual, p. 96)

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Thus we are able to use interchangeably the phrases

- (Definition Term) $\lim _{x \rightarrow a} f(x)=L$.
- (Definition Description) For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.
${ }^{1}$ I borrow the words Definition Term and Definition Description from the html tags < DT $>$ and $<$ DD $>$.

We wish to decide which variations of a definition are "correct" and give an equivalent definition.

Think of a Equivalent Definitions as an If and Only If Theorem.
The phrase "Definition \mathbf{X} is equivalent to Definition \mathbf{Y} " means you can use interchangeably the phrases

- [Definition] Term (What is being defined)
- [Definition] Description X (Details)
- [Definition] Description Y (Details)

To show that two definitions \mathbf{X} and \mathbf{Y} for the same Definition Term are equivalent we must show the following:

- Satisfying Definition Description $X \Rightarrow$ Satisfying Definition Description Y.
- Satisfying Definition Description Y \Rightarrow Satisfying Definition Description X.

Now if Definition X is not equivalent to Definition Y for the same Definition Term, then at least one of the following is false:

- Satisfying Definition Description $\mathrm{X} \Rightarrow$ Satisfying Definition Description Y.
- Satisfying Definition Description Y \Rightarrow Satisfying Definition Description X.

Interpreting each of the above as a Theorem, the way to show a Theorem is false is to construct a counterexample. A counterexample is an object [construct, ...] which satisfies the hypotheses of the proposed Theorem, but does not satisfy the conclusion[s] of the proposed Theorem.

Actual Definition of Limit

Definition ACTUAL. (Actual, p. 96)

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Proposed Variations

For each of the proposed variations AA - OO of the actual (Spivak) definition description of

$$
\lim _{x \rightarrow a} f(x)=L
$$

decide whether the proposed variation Definition XX is equivalent to Definition Actual. Thus for each you must think about the validity of the the two Theorems:

- Satisfying Definition Description XX \Rightarrow Satisfying Definition Description ACTUAL. If False, there is a counterexample.
- Satisfying Definition Description ACTUAL \Rightarrow Satisfying Definition Description XX. If False, there is a counterexample.

You may construct any counterexample graphically, by formula, or by a precise description.

Definition AA.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all $x, 0<|x-a|<\delta$, and $|f(x)-L|<\epsilon$.

Definition BB.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for some $x, 0<|x-a|<\delta$, and $|f(x)-L|<\epsilon$.

Definition CC.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For an $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Definition DD.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<\delta$, $|f(x)-L|<\epsilon$.

Definition EE.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For any $\epsilon>0$, there is a $\delta>0$ such that, for all x, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Definition FF.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For any $\epsilon>0$, there is a $\delta>0$ such that, for all $x, 0<|x-a|<\delta$ implies $|f(x)-L|<\epsilon$.

Definition GG.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For any $\epsilon>0$, there is a $\delta>0$ such that, for all $x,|f(x)-L|<\epsilon$ if $0<|x-a|<\delta$.

Definition HH.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For any $\epsilon>0$, there is a $\delta>0$ such that, for all $x,|f(x)-L|<\epsilon$ and $0<|x-a|<$ δ.

Definition II.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For any $\epsilon>0$, there is a $\delta>0$ such that, for all $x,|f(x)-L|<\epsilon$ whenever $0<|x-a|<\delta$.

Definition JJ.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is a $\delta>0$ such that, for all $x,|f(x)-L|<\epsilon$ for $0<$ $|x-a|<\delta$.

Definition KK.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For an $\epsilon>0$, there is a $\delta>0$ such that, for all $x,|f(x)-L|<\epsilon$ for $0<|x-a|<\delta$.

Definition LL.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For a $\delta>0$, there is an $\epsilon>0$ such that, for all $x,|f(x)-L|<\epsilon$ provided that $0<|x-a|<\delta$.

Definition MM.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For all $\delta>0$, there is an $\epsilon>0$ such that, for all $x,|f(x)-L|<\epsilon$ for $0<|x-a|<$ δ.

Definition NN.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For some $\delta>0$, there is an $\epsilon>0$ such that, for all x, if $|f(x)-L|<\epsilon$, then $0<|x-a|<\delta$.

Definition OO.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For some $\delta>0$, for all $\epsilon>0$, for all $x,|f(x)-L|<\epsilon$ if $0<|x-a|<\delta$.

