MthT 430 Chapter 5 Limits - An Equivalent Definition

This note is an attempt to clear up the confusion I (JL) probably created at the beginning of class October 10, 2007.

It is also closely related to problems 5.25 and 5.26 in Spivak.
In applying the definition of $\lim _{x \rightarrow a} f(x)=L$, it is sometimes convenient to multiply ϵ and/or δ by positive constants.

Limits - Definitions

Definition (Actual, p. 96).

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

An Equivalent Definition of Limit

Definition 10^{6}.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $0<|x-a|<10^{6} \delta$, then $|f(x)-L|<\epsilon$.
$10^{6} \Rightarrow$ Actual: Fix $\epsilon>0$. By 10^{6}, there is a $\delta>0$ such that, for all x, if $0<|x-a|<10^{6} \delta$, then $|f(x)-L|<\epsilon$. If $0<|x-a|<\delta$, then $0<|x-a|<10^{6} \delta$, so $|f(x)-L|<\epsilon$.

Actual $\Rightarrow 10^{6}:$ Fix $\epsilon>0$. By Actual, there is an $\eta>0$ such that, for all x, if $0<|x-a|<\eta$, then $|f(x)-L|<\epsilon$. Let $\delta=10^{-6} \eta$. Then $\delta>0$ iff $\eta>0$. For all x, if $0<|x-a|<10^{6} \delta=\eta$, $|f(x)-L|<\epsilon$.
$10^{6} \Rightarrow$ Actual: (another Proof) Fix $\epsilon>0$. By 10^{6}, there is a $\rho>0$ such that, for all x, if $0<|x-a|<10^{6} \rho$, then $|f(x)-L|<\epsilon$. Let $\delta=10^{6} \rho$. Then $\delta>0$ iff $\rho>0$. For all x, if $0<|x-a|<\delta=10^{6} \rho,|f(x)-L|<\epsilon$.

