MthT 430 Notes Chapter 6a Binary Expansions and Arguments

Real Numbers and Binary Expansions

The real numbers in \mathbf{R} are identified with points on a horizontal line. For the time being, we will identify a real number x with a decimal expansion.

- Every decimal expansion represents a real number x :

$$
\begin{aligned}
x & = \pm N . d_{1} d_{2} \ldots, \\
d_{k} & \in\{0,1, \ldots, 9\} .
\end{aligned}
$$

This is the statement that every infinite series of the form

$$
d_{1} 10^{-1}+d_{2} 10^{-2}+\ldots, \quad d_{k} \in\{0,1, \ldots, 9\},
$$

converges.
Just as well we could identify a real number x with a binary expansion.

- Every binary expansion represents a real number x :

$$
\begin{aligned}
x & = \pm N_{\cdot \operatorname{bin}} b_{1} b_{2} \ldots, \\
b_{k} & \in\{0,1\} .
\end{aligned}
$$

This is the statement that every infinite series of the form

$$
b_{1} 2^{-1}+b_{2} 2^{-2}+\ldots, \quad b_{k} \in\{0,1\}
$$

converges.

A demonstration of a correspondence between the binary expansion and a point on a horizontal line was given in class.

Constructing the Binary Expansion

Let x be a real number, $0 \leq x<1$.
We divide $[0,1)$ into two half-open intervals, $\left[0, \frac{1}{2}\right)$ and $\left[\frac{1}{2}, 1\right)$.

Notice, that in binary notation we may write the two intervals respectively as $\left[0,0 \cdot{ }^{\text {bin }} 1\right)$ and $\left[0 \cdot{ }_{\cdot}{ }^{\text {in }} 1,1\right)$.

If x is in the left interval, $x=0+0 \cdot 2^{-1}+\ldots$, so we let $b_{1}=0, s_{1}=0 \cdot{ }_{b i n} b_{1}$, so that

$$
\begin{aligned}
x & =0 \cdot \cdot_{\operatorname{bin}} 0+\ldots \\
& =s_{1}+r_{1},
\end{aligned}
$$

where

$$
0 \leq r_{1}<2^{-1}
$$

If x is in the right interval, $x=0+1 \cdot 2^{-1}+\ldots$, so we let $b_{1}=1, s_{1}=0 \cdot{ }_{\operatorname{bin}} b_{1}$, so that

$$
\begin{aligned}
x & =0 \cdot{ }_{\cdot b i n}^{1+}+\ldots \\
& =s_{1}+r_{1},
\end{aligned}
$$

where

$$
0 \leq r_{1}<2^{-1}
$$

We formalize the process by saying

$$
\begin{aligned}
b_{1} & = \begin{cases}0, & 0 \leq x<\frac{1}{2}, \\
1, & \frac{1}{2} \leq x<1,\end{cases} \\
s_{1} & =0 \cdot \operatorname{bin} b_{1} \\
& =b_{1} \cdot 2^{-1}, \\
x & =s_{1}+r_{1}, \\
0 & \leq r_{1}<2^{-1} .
\end{aligned}
$$

If the first remainder r_{1} is 0 , that is $x=0$ or $x=\frac{1}{2}, \mathrm{STOP} ; x=s_{1}$ and the binary expansion of x has been found.

If $r_{1} \neq 0$, we apply a similar process to $r_{1}=x-s_{1}$ to find the second binary digit in the expansion of x. Let $r_{1}^{*}=2^{1} \cdot r_{1}$. Once again divide $[0,1)$ into the two half-open intervals, $\left[0, \frac{1}{2}\right)$ and $\left[\frac{1}{2}, 1\right)$.

If r_{1}^{*} is in the left interval, $x=0+b_{1} \cdot 2^{-1}+0 \cdot 2^{-2}+\ldots$; If r_{1}^{*} is in the right interval, $x=0+b_{1} \cdot 2^{-1}+1 \cdot 2^{-2}+\ldots$, so we let $b_{1}=1$. This is same is saying that x is in the left or right half as the interval selected in step 1 .

Thus

$$
\begin{aligned}
b_{2} & = \begin{cases}0, & 0 \leq r_{1}^{*}<\frac{1}{2}, \\
1, & \frac{1}{2} \leq r_{1}^{*}<1,\end{cases} \\
s_{2} & =0 \cdot \text { bin }^{2} b_{1} b_{2} \\
& =b_{1} \cdot 2^{-1}+b_{2} \cdot 2^{-2} \\
x & =s_{2}+r_{2} \\
0 & \leq r_{2}<2^{-2} .
\end{aligned}
$$

If the second remainder r_{2} is 0 , STOP; $x=s_{2}$ and the binary expansion of x has been found. Otherwise continue!

The continuation may be defined by the Principle of Mathematical Induction (Recursion) so that if $b_{n}, s_{n}=0 \cdot$ bin $b_{1} \ldots b_{n}, x=s_{n}+r_{n}$, have been constructed so that $0 \leq r_{n}<2^{-n}$, let

$$
\begin{aligned}
r_{n}^{*} & =2^{n} \cdot r_{n}, \\
b_{n+1} & = \begin{cases}0, & 0 \leq r_{n}^{*}<\frac{1}{2}, \\
1, & \frac{1}{2} \leq r_{n}^{*}<1,\end{cases} \\
s_{n+1} & =0 \cdot \operatorname{bin}^{2} b_{1} b_{2} \ldots b_{n+1} \\
& =b_{1} \cdot 2^{-1}+b_{2} \cdot 2^{-2}+\ldots+b_{n+1} \cdot 2^{-(n+1)} \\
x & =s_{n+1}+r_{n+1}, \\
0 & \leq r_{n+1}<2^{-(n+1)} .
\end{aligned}
$$

If the remainder r_{n+1} is $0, \mathrm{STOP} ; x=s_{n+1}$ and the binary expansion of x has been found. Otherwise continue!

What has been done: Given $x, 0 \leq x<1$, there is a nondecreasing sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ of finite binary expansions such that $0 \leq x-s_{n}<2^{-n}$. Thus

$$
\lim _{n \rightarrow \infty} s_{n}=x
$$

