MthT 430 Projects Chapter 6a Limits and Continuity

Limits

1. (Omit for now - will discuss after MidTerm Assessment) Let $f(x)$ be a function such that

- domain $(f)=[0,1)$.
- For all $x($ in $[0,1)), 0 \leq f(x)<1$.
- The function f is increasing on $[0,1)$.

Show that there is a number $L, 0 \leq L \leq 1$, such that

$$
\lim _{x \rightarrow 1^{-}} f(x)=L
$$

Hint: Construct a binary expansion for L.
2. Discuss the continuity of the function described on p. 97 and whose graph is sketched in FIGURE 14.
3. Prove: If g is continuous at $a, g(a) \neq 0$, then there is a $\delta>0$ for which $(a-\delta, a+\delta)$ is contained in the domain of $\frac{1}{g}$.
4. Spivak, Chapter 6, Problem 3.
5. Spivak, Chapter 6, Problem 13.
6. If f is continuous at $0, f(0)=0, g(x)$ is defined for all x near 0 , and $|g|$ is a bounded function, say all you can about

$$
\lim _{x \rightarrow 0} f(x) \cdot g(x) .
$$

