MthT 430 Projects Chapter 6a Limits and Continuity

Limits

- 1. (Omit for now will discuss after MidTerm Assessment) Let f(x) be a function such that
 - domain (f) = [0, 1).
 - For all x (in [0, 1)), $0 \le f(x) < 1$.
 - The function f is increasing on [0, 1).

Show that there is a number $L, 0 \leq L \leq 1$, such that

$$\lim_{x \to 1^-} f(x) = L.$$

Hint: Construct a binary expansion for L.

- 2. Discuss the continuity of the function described on p. 97 and whose graph is sketched in FIGURE 14.
- 3. Prove: If g is continuous at a, $g(a) \neq 0$, then there is a $\delta > 0$ for which $(a \delta, a + \delta)$ is contained in the domain of $\frac{1}{q}$.
- 4. Spivak, Chapter 6, Problem 3.
- 5. Spivak, Chapter 6, Problem 13.
- 6. If f is continuous at 0, f(0) = 0, g(x) is defined for all x near 0, and |g| is a bounded function, say all you can about

$$\lim_{x \to 0} f(x) \cdot g(x).$$