MthT 430 Projects Chapter 6a Solution

Limits

- 1. Let f(x) be a function such that
 - domain (f) = [0, 1).
 - For all x (in [0, 1)), $0 \le f(x) < 1$.
 - The function f is increasing on [0, 1).

Show that there is a number $L, 0 \leq L \leq 1$, such that

$$\lim_{x \to 1^{-}} f(x) = L$$

Hint: Construct a binary expansion for *L*.

- 2. Discuss the continuity of the function described on p. 97 and whose graph is sketched in FIGURE 14.
- 3. Prove: If g is continuous at a, $g(a) \neq 0$, then there is a $\delta > 0$ for which $(a \delta, a + \delta)$ is contained in the domain of $\frac{1}{q}$.

Solution. For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $|x - a| < \delta$, then $|g(x) - g(a)| < \epsilon$.

Let $\epsilon = |g(a)|$. Then there is a $\delta > 0$ such that for $|x - a| < \delta$, |g(x) - g(a)| < |g(a)|. Thus for $a - \delta < x < a + \delta$, g(a) - |g(a)| < g(x) < g(a) + |g(a)|; if g(a) > 0, 0 < g(x) < 2g(a); if g(a) < 0, 2g(a) < g(x) < 0. In either case, for $a - \delta < x < a + \delta$, $g(x) \neq 0$, and x is in the domain of 1/g.

Another Solution. For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $|x - a| < \delta$, then $|g(x) - g(a)| < \epsilon$.

Let $\epsilon = |g(a)|$. Then there is a $\delta > 0$ such that for $|x - a| < \delta$, |g(x) - g(a)| < |g(a)|. Thus for $a - \delta < x < a + \delta$, $|g(x)| = |g(a) + (g(x) - g(a))| \ge |g(a| - |g(x) - g(a)| > 0$. Here we have used the *triangle inequality* in the form $|A \pm B| \ge |A| - |B|$.

Thus, for $a - \delta < x < a + \delta$, $g(x) \neq 0$, and x is in the domain of 1/g.

Good Variation ... $\epsilon = |g(a)|$... If g(a) > 0, ... for $a - \delta < x < a + \delta$, $g(x) \in (g(a) - \epsilon, g(a) + \epsilon) = (0, 2g(a))$ and $g(x) \neq 0$