MthT 430 Projects Chapter 6a Solution

Limits

1. Let $f(x)$ be a function such that

- domain $(f)=[0,1)$.
- For all $x($ in $[0,1)), 0 \leq f(x)<1$.
- The function f is increasing on $[0,1)$.

Show that there is a number $L, 0 \leq L \leq 1$, such that

$$
\lim _{x \rightarrow 1^{-}} f(x)=L
$$

Hint: Construct a binary expansion for L.
2. Discuss the continuity of the function described on p. 97 and whose graph is sketched in FIGURE 14.
3. Prove: If g is continuous at $a, g(a) \neq 0$, then there is a $\delta>0$ for which $(a-\delta, a+\delta)$ is contained in the domain of $\frac{1}{g}$.

Solution. For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $|x-a|<\delta$, then $|g(x)-g(a)|<\epsilon$.

Let $\epsilon=|g(a)|$. Then there is a $\delta>0$ such that for $|x-a|<\delta,|g(x)-g(a)|<|g(a)|$. Thus for $a-\delta<x<a+\delta, g(a)-|g(a)|<g(x)<g(a)+|g(a)|$; if $g(a)>0,0<g(x)<2 g(a)$; if $g(a)<0,2 g(a)<g(x)<0$. In either case, for $a-\delta<x<a+\delta, g(x) \neq 0$, and x is in the domain of $1 / \mathrm{g}$.

Another Solution. For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $|x-a|<\delta$, then $|g(x)-g(a)|<\epsilon$.

Let $\epsilon=|g(a)|$. Then there is a $\delta>0$ such that for $|x-a|<\delta,|g(x)-g(a)|<|g(a)|$. Thus for $a-\delta<x<a+\delta,|g(x)|=|g(a)+(g(x)-g(a))| \geq \mid g(a|-|g(x)-g(a)|>0$. Here we have used the triangle inequality in the form $|A \pm B| \geq|A|-|B|$.

Thus, for $a-\delta<x<a+\delta, g(x) \neq 0$, and x is in the domain of $1 / g$.
Good Variation ... $\epsilon=|g(a)| \ldots$ If $g(a)>0, \ldots$ for $a-\delta<x<a+\delta, g(x) \in$ $(g(a)-\epsilon, g(a)+\epsilon)=(0,2 g(a))$ and $g(x) \neq 0$...

