MthT 430 Notes 430 Chap6b Continuity

Continuity at a Point

Definition. The function f is continuous at a if

$$\lim_{x \to a} f(x) = f(a).$$

Pay attention to the domain of the function. In particular, if f is continuous at a, then a and all points sufficiently close to a are in the domain of f.

Working Definition. The function f is continuous at a, if we can make f(x) as close as we like to f(a) by requiring that x be sufficiently close to a^1 .

- (Working JL) The function f is continuous at a, if f(x) = f(a) + assmallasdesired whenever x = a + closeenoughto0.
- (More Informal) The function f is continuous at a, if f(x) is close to f(a) whenever x is close enough to a.

Thinking of a as fixed, and letting Δx being small (maybe even 0), let

$$\Delta f \equiv f(a + \Delta x) - f(a).$$

To emphasize the dependence of Δf on a and Δx , we sometimes write Δf as $\Delta f(a)$ or $\Delta f(a, \Delta x)$.

Then our working definitions of continuity at a become

- (Working JL). The function f is continuous at a, if we can make $\Delta f(a)$ is assmallasdesired as by requiring that Δx be closeenoughto0.
- (More Informal) The function f is continuous at a, if $\Delta f(a)$ is small whenever Δx is small enough.

 $\epsilon - \delta$ Definition. The function f is continuous at a means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $|x - a| < \delta$, then $|f(x) - f(a)| < \epsilon$.

Variation $\epsilon - \delta$ **Definition.** The function f is continuous at a means: For every $\epsilon > 0$, there is some $\delta > 0$ such that, if $|\Delta x| < \delta$, then $|\Delta f(a, \Delta x)| < \epsilon$.

By the fundamental limit theorems, If f and g are two functions continuous at a, then

¹ Note that we have omitted the phrase "but $\neq a$ " but could have included it without changing the meaning.

- f + g is continuous at a,
- $f \cdot g$ is continuous at a,
- f/g is continuous at a, provided $g(a) \neq 0$.

Compositions

Theorem 2. If g is continuous at a and f is continuous at g(a), then $f \circ g$ is continuous at a.

Proof: $(\epsilon - \delta)$. We must show that: For every $\epsilon > 0$, there is some $\delta > 0$ such that, for all x, if $|x - a| < \delta$, then $|f(g(x)) - f(g((a)))| < \epsilon$.

Fix $\epsilon > 0$. Use the continuity of f at g(a) to find a $\delta_1 > 0$ such that, for all y, if $|y - g(a)| < \delta_1$, then $|f(y) - f(g(a))| < \epsilon$.

Now use the continuity of g at a to to find a $\delta_2 > 0$ such that, for all x, if $|x - a| < \delta_2$, then $|g(x) - g(a)| < \delta_1$.

Then for all x, if $|x-a| < \delta_2$, then $|g(x) - g(a)| < \delta_1$ and $|f(g(x)) - f(g(a))| < \epsilon$.

Continuity on Intervals

A function f defined on an interval I = (a, b) is continuous on I if f is continuous at x for very $x \in (a, b)$.

Continuity of a function on a non open interval requires a modification of the definition of continuity at the included endpoints. A function f defined on a closed interval I = [a, b]is continuous on I if f is continuous at x for very $x \in (a, b)$, right continuous at $a - \lim_{x \to a^+} f(x) = f(a)$ – and left continuous at $b - \lim_{x \to b^-} f(x) = f(b)$. Make the obvious modifications if I = [a, b] or I = (a, b]