MthT 430 Notes 430 Chap6b Continuity

Continuity at a Point

Definition. The function f is continuous at a if

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

Pay attention to the domain of the function. In particular, if f is continuous at a, then a and all points sufficiently close to a are in the domain of f.

Working Definition. The function f is continuous at a, if we can make $f(x)$ as close as we like to $f(a)$ by requiring that x be sufficiently close to a^{1}.

- (Working JL) The function f is continuous at a, if $f(x)=f(a)+$ assmallasdesired whenever $x=a+$ closeenoughto0.
- (More Informal) The function f is continuous at a, if $f(x)$ is close to $f(a)$ whenever x is close enough to a.

Thinking of a as fixed, and letting Δx being small (maybe even 0), let

$$
\Delta f \equiv f(a+\Delta x)-f(a)
$$

To emphasize the dependence of Δf on a and Δx, we somtimes write Δf as $\Delta f(a)$ or $\Delta f(a, \Delta x)$.

Then our working definitions of continuity at a become

- (Working JL). The function f is continuous at a, if we can make $\Delta f(a)$ is assmallasdesired as by requiring that Δx be closeenoughto0.
- (More Informal) The function f is continuous at a, if $\Delta f(a)$ is small whenever Δx is small enough.
$\epsilon-\delta$ Definition. The function f is continuous at a means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $|x-a|<\delta$, then $|f(x)-f(a)|<\epsilon$.

Variation $\epsilon-\delta$ Definition. The function f is continuous at a means: For every $\epsilon>0$, there is some $\delta>0$ such that, if $|\Delta x|<\delta$, then $\mid \Delta f(a, \Delta x \mid<\epsilon$.

By the fundamental limit theorems, If f and g are two functions continuous at a, then
${ }^{1}$ Note that we have omitted the phrase "but $\neq a$ " but could have included it without changing the meaning.

- $f+g$ is continuous at a,
- $f \cdot g$ is continuous at a,
- f / g is continuous at a, provided $g(a) \neq 0$.

Compositions

Theorem 2. If g is continuous at a and f is continuous at $g(a)$, then $f \circ g$ is continuous at a.

Proof: $(\epsilon-\delta)$. We must show that: For every $\epsilon>0$, there is some $\delta>0$ such that, for all x, if $|x-a|<\delta$, then $\mid f(g(x))-f(g((a)) \mid<\epsilon$.

Fix $\epsilon>0$. Use the continuity of f at $g(a)$ to find a $\delta_{1}>0$ such that, for all y, if $|y-g(a)|<\delta_{1}$, then $|f(y)-f(g(a))|<\epsilon$.

Now use the continuity of g at a to to find a $\delta_{2}>0$ such that, for all x, if $|x-a|<\delta_{2}$, then $|g(x)-g(a)|<\delta_{1}$.

Then for all x, if $|x-a|<\delta_{2}$, then $|g(x)-g(a)|<\delta_{1}$ and $\mid f(g(x))-f(g((a)) \mid<\epsilon$.

Continuity on Intervals

A function f defined on an interval $I=(a, b)$ is continuous on I if f is continuous at x for very $x \in(a, b)$.

Continuity of a function on a non open interval requires a modification of the definition of continuity at the included endpoints. A function f defined on a closed interval $I=[a, b]$ is continuous on I if f is continuous at x for very $x \in(a, b)$, right continuous at $a-$ $\lim _{x \rightarrow a^{+}} f(x)=f(a)$ - and left continuous at $b-\lim _{x \rightarrow b^{-}} f(x)=f(b)$. Make the obvious modifications if $I=[a, b)$ or $I=(a, b]$

