MthT 430 Notes Chap7a Three Hard Theorems

(CFIVP) Continuous Functions on Intervals Have the Intermediate Value Property

Theorem 1. If f is continuous on $[a, b]$ and $f(a)<0<f(b)$, then there is some x in $[a, b]$ such that $f(x)=0$.

An argument constructing the binary expansion for one such x will be given in class. See http://www.math.uic.edu/~lewis/mtht430/chap7b.pdf
(CFCIB) Continuous Functions on Closed Intervals are Bounded

Theorem 2. If f is continuous on $[a, b]$, then f is bounded above on $[a, b]$, that is, there is some number N such that $f(x) \leq N$ for all x in $[a, b]$.

CFCIMAX) Continuous Functions on Closed Intervals assume a Maximum Value for the Interval

Theorem 3. If f is continuous on $[a, b]$, then there is a number y in $[a, b]$ such that $f(y) \geq f(x)$ for all x in $[a, b]$

Consequences

- If f is continuous on $[a, b]$ and changes sign, then the equation $f(x)=0$ has a root in (a, b).
- (Intermediate Value Property for Continuous Functions on Closed Intervals) If f is continuous on $[a, b]$ and ξ is between $f(a)$ and $f(b)$, then the equation $f(x)=\xi$ has a root in (a, b).
- Every nonnegative number ξ has a unique nonnegative square root, denoted $\sqrt{\xi}$, which satisfies $\sqrt{\xi} \geq 0$ and $(\sqrt{\xi})^{2}=\xi$.

