
MthT 430 Notes Chap 7b Hard Theorems – Proofs by Binary Expansion

For this discussion, we shall assume:

(P13–BIN) Binary Expansions Converge. Every binary expansion represents a real
number x: every infinite series of the form

c12−1 + c22−2 + . . . + ck2−k + . . . , ck ∈ {0, 1} ,

converges to a real number x in [0, 1] and write the binary expansion of x as

x = .binc1c2 . . . .

Continuous Functions on Intervals Have the Intermediate Value Property

Theorem 1. If f is continuous on [a, b] and f(a) < 0 < f(b), then there is some x in [a, b]
such that f(x) = 0.

In numerical analysis, the following is known as finding the root of f(x) = 0 by the method
of bisection.

We will show this result by constructing the binary expansion of a number x ∈ (a, b) such
that f(x) = 0.

Without loss of generality, [a, b] = [0, 1]. The rough idea is to ask: If there is such an x,
is x in the left half or in the right half of [0, 1], and then proceed by recursion (induction).

Let m1 = 1
2 be the midpoint of [0, 1]. Ask the question: Is f(m1) < 0, = 0, or > 0.

Cases:

• If f(m1) = 0, let x = m1 = 0.bin1. STOP! f(x) = 0 as desired.

• If f(m1) < 0, the function changes sign on (m1, 1) so we look for the root on (m1, 1).
Let

a1 = m1,

b1 = 1,

c1 = 1,

s1 = 0.binc1

= 0.bin1

= a1.

Note that
b1 − a1 =

1
21

,

f(a1) < 0 < f(b1).
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• If f(m1) > 0, the function changes sign on (0,m1) so we look for the root on (0,m1).
Let

a1 = 0,

b1 == m1

=
1
2
,

= a1 +
1
2

c1 = 0,

s1 = 0.binc1

= 0.bin0

= a1.

Note that
b1 − a1 =

1
21

,

f(a1) < 0 < f(b1).

We think of c1 as the first binary digit in the expansion of x.

Suppose that an, bn = an +
1
2n

, sn = an = 0.binc1 . . . cn have been constructed so that

f(a1) < 0 < f(b1),

, let mn = an +
1

2n+1
=

1
2

(an + bn). Ask the question: Is f(mn) < 0, = 0, or > 0.

Cases:

• If f(mn) = 0, let x = mn = sn +
1

2n+1
= 0.binc1 . . . cn1. STOP! f(x) = 0 as desired.

• If f(mn) < 0, the function changes sign on (mn, bn) so we look for the root on (mn, bn).
Let

an+1 = mn,

bn+1 = bn,

cn+1 = 1,

s1 = 0.binc1 . . . cncn+1

= 0.binc1 . . . cn1

= an+1.

Note that
bn+1 − an+1 =

1
2n+1

,

f(an+1) < 0 < f(bn+1).
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• If f(mn) > 0, the function changes sign on (an,mn) so we look for the root on (an,mn).
Let

an+1 = an,

bn+1 = mn,

cn+1 = 0,

s1 = 0.binc1 . . . cncn+1

= 0.binc1 . . . cn0

= an+1.

Note that
bn+1 − an+1 =

1
2n+1

,

f(an+1) < 0 < f(bn+1).

If the process does not stop, we have that, for all n,

f(sn) < 0 < f

(
sn +

1
2n+1

)
.

Let
x = lim

n→∞
sn

= 0.binc1c2 . . . cn . . . .

We have that f(x) = 0 since

f(x) = lim
n→∞

f(sn)

≤ 0,

f(x) = lim
n→∞

f

(
sn +

1
2n+1

)

≥ 0.

The Bolzano–Weierstraß Theorem

Theorem (Bolzano–Weierstraß). Let {xn}∞n=1 be a sequence of points in. [0, 1]. Then
there is an x in [0, 1] which is a limit point3 of the sequence {xn}∞n=1.

The proof will construct a binary expansion for x.

3 A point x is a limit point of the sequence if for every ε > 0, infinitely many terms of the
sequence are within ε of x. Alternately, there is a subsequence which converges to x. A
more informal idea is to say that infinitely many terms are as close as desired to x.
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Now – either infinitely many terms of the sequence are 1, in which case x = 1 = 0.bin0 is
the desired limit point OR

Ask the question: For infinitely many k, is it true that xk ∈
[
0,

1
21

)
?

If YES, let
c1 = 0,

a1 = 0 = 0.bin0,

b1 =
1
2

= a1 +
1
21

.

s1 = a1.

Then
b1 − a1 =

1
21

,

Infinitely many xk are in [a1, b1).

If NO, let
c1 = 1,

a1 =
1
2

= 0.bin1,

b1 = 1 = 1.bin0

= a1 +
1
21

.

s1 = a1.

Then
b1 − a1 =

1
21

,

Infinitely many xk are in [a1, b1).

Now continue, . . .
x = lim

n→∞
sn

= lim
n→∞

(
sn +

1
2n

)

Note that 0 ≤ x− sn = |x− sn| ≤ 1
2n

.
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