MthT 430 Notes Chap 7b Hard Theorems - Proofs by Binary Expansion

For this discussion, we shall assume:
(P13-BIN) Binary Expansions Converge. Every binary expansion represents a real number x : every infinite series of the form

$$
c_{1} 2^{-1}+c_{2} 2^{-2}+\ldots+c_{k} 2^{-k}+\ldots, \quad c_{k} \in\{0,1\}
$$

converges to a real number x in $[0,1]$ and write the binary expansion of x as

$$
x=\cdot \operatorname{bin}^{c_{1} c_{2} \ldots}
$$

Continuous Functions on Intervals Have the Intermediate Value Property

Theorem 1. If f is continuous on $[a, b]$ and $f(a)<0<f(b)$, then there is some x in $[a, b]$ such that $f(x)=0$.

In numerical analysis, the following is known as finding the root of $f(x)=0$ by the method of bisection.

We will show this result by constructing the binary expansion of a number $x \in(a, b)$ such that $f(x)=0$.

Without loss of generality, $[a, b]=[0,1]$. The rough idea is to ask: If there is such an x, is x in the left half or in the right half of $[0,1]$, and then proceed by recursion (induction).

Let $m_{1}=\frac{1}{2}$ be the midpoint of $[0,1]$. Ask the question: Is $f\left(m_{1}\right)<0,=0$, or >0.
Cases:

- If $f\left(m_{1}\right)=0$, let $x=m_{1}=0 \cdot$.bin 1. STOP! $f(x)=0$ as desired.
- If $f\left(m_{1}\right)<0$, the function changes sign on $\left(m_{1}, 1\right)$ so we look for the root on $\left(m_{1}, 1\right)$. Let

$$
\begin{aligned}
a_{1} & =m_{1}, \\
b_{1} & =1, \\
c_{1} & =1, \\
s_{1} & =0 \cdot{ }_{b i n} c_{1} \\
& =0 \cdot{ }^{\text {bin }} 1 \\
& =a_{1} .
\end{aligned}
$$

Note that

$$
\begin{gathered}
b_{1}-a_{1}=\frac{1}{2^{1}} \\
f\left(a_{1}\right)<0<f\left(b_{1}\right) .
\end{gathered}
$$

- If $f\left(m_{1}\right)>0$, the function changes sign on $\left(0, m_{1}\right)$ so we look for the root on $\left(0, m_{1}\right)$. Let

$$
\begin{aligned}
a_{1} & =0, \\
b_{1} & ==m_{1} \\
& =\frac{1}{2}, \\
& =a_{1}+\frac{1}{2} \\
c_{1} & =0, \\
s_{1} & =0 \cdot{ }_{b i n} c_{1} \\
& =0 \cdot \operatorname{bin}^{0} \\
& =a_{1} .
\end{aligned}
$$

Note that

$$
\begin{gathered}
b_{1}-a_{1}=\frac{1}{2^{1}} \\
f\left(a_{1}\right)<0<f\left(b_{1}\right) .
\end{gathered}
$$

We think of c_{1} as the first binary digit in the expansion of x.
Suppose that $a_{n}, b_{n}=a_{n}+\frac{1}{2^{n}}, s_{n}=a_{n}=0 \cdot \operatorname{bin} c_{1} \ldots c_{n}$ have been constructed so that

$$
f\left(a_{1}\right)<0<f\left(b_{1}\right)
$$

, let $m_{n}=a_{n}+\frac{1}{2^{n+1}}=\frac{1}{2}\left(a_{n}+b_{n}\right)$. Ask the question: Is $f\left(m_{n}\right)<0,=0$, or >0.
Cases:

- If $f\left(m_{n}\right)=0$, let $x=m_{n}=s_{n}+\frac{1}{2^{n+1}}=0 \cdot{ }_{\operatorname{bin}} c_{1} \ldots c_{n} 1$. STOP! $f(x)=0$ as desired.
- If $f\left(m_{n}\right)<0$, the function changes sign on $\left(m_{n}, b_{n}\right)$ so we look for the root on $\left(m_{n}, b_{n}\right)$. Let

$$
\begin{aligned}
a_{n+1} & =m_{n}, \\
b_{n+1} & =b_{n}, \\
c_{n+1} & =1, \\
s_{1} & =0 \cdot{ }_{\cdot \operatorname{bin}} c_{1} \ldots c_{n} c_{n+1} \\
& =0 \cdot{ }_{\cdot b i n} c_{1} \ldots c_{n} 1 \\
& =a_{n+1} .
\end{aligned}
$$

Note that

$$
\begin{aligned}
b_{n+1}-a_{n+1} & =\frac{1}{2^{n+1}} \\
f\left(a_{n+1}\right)<0 & <f\left(b_{n+1}\right) .
\end{aligned}
$$

- If $f\left(m_{n}\right)>0$, the function changes sign on $\left(a_{n}, m_{n}\right)$ so we look for the root on $\left(a_{n}, m_{n}\right)$. Let

$$
\begin{aligned}
a_{n+1} & =a_{n}, \\
b_{n+1} & =m_{n}, \\
c_{n+1} & =0, \\
s_{1} & =0 \cdot{ }_{\cdot \operatorname{bin}} c_{1} \ldots c_{n} c_{n+1} \\
& =0 \cdot \operatorname{bin} c_{1} \ldots c_{n} 0 \\
& =a_{n+1} .
\end{aligned}
$$

Note that

$$
\begin{aligned}
& b_{n+1}-a_{n+1}=\frac{1}{2^{n+1}} \\
& f\left(a_{n+1}\right)<0<f\left(b_{n+1}\right) .
\end{aligned}
$$

If the process does not stop, we have that, for all n,

$$
f\left(s_{n}\right)<0<f\left(s_{n}+\frac{1}{2^{n+1}}\right)
$$

Let

$$
\begin{aligned}
x & =\lim _{n \rightarrow \infty} s_{n} \\
& =0 \cdot \cdot_{\operatorname{bin}} c_{1} c_{2} \ldots c_{n} \ldots
\end{aligned}
$$

We have that $f(x)=0$ since

$$
\begin{aligned}
f(x) & =\lim _{n \rightarrow \infty} f\left(s_{n}\right) \\
& \leq 0 \\
f(x) & =\lim _{n \rightarrow \infty} f\left(s_{n}+\frac{1}{2^{n+1}}\right) \\
& \geq 0
\end{aligned}
$$

The Bolzano-Weierstraß Theorem

Theorem (Bolzano-Weierstraß). Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of points in. [0, 1]. Then there is an x in $[0,1]$ which is a limit point ${ }^{3}$ of the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$.

The proof will construct a binary expansion for x.
${ }^{3}$ A point x is a limit point of the sequence if for every $\epsilon>0$, infinitely many terms of the sequence are within ϵ of x. Alternately, there is a subsequence which converges to x. A more informal idea is to say that infinitely many terms are as close as desired to x.

Now - either infinitely many terms of the sequence are 1 , in which case $x=1=0 \cdot$ bin 0 is the desired limit point OR

Ask the question: For infinitely many k, is it true that $x_{k} \in\left[0, \frac{1}{2^{1}}\right)$?
If YES, let

$$
\begin{aligned}
c_{1} & =0, \\
a_{1} & =0=0 \cdot \operatorname{bin}^{0}, \\
b_{1} & =\frac{1}{2} \\
& =a_{1}+\frac{1}{2^{1}} . \\
s_{1} & =a_{1} .
\end{aligned}
$$

Then

$$
b_{1}-a_{1}=\frac{1}{2^{1}}
$$

Infinitely many x_{k} are in $\left[a_{1}, b_{1}\right)$.

If NO, let

$$
\begin{aligned}
c_{1} & =1, \\
a_{1} & =\frac{1}{2}=0 \cdot \cdot \operatorname{bin} 1, \\
b_{1} & =1=1 \cdot \operatorname{bin} 0 \\
& =a_{1}+\frac{1}{2^{1}} . \\
s_{1} & =a_{1} .
\end{aligned}
$$

Then

$$
b_{1}-a_{1}=\frac{1}{2^{1}}
$$

Infinitely many x_{k} are in $\left[a_{1}, b_{1}\right)$.

Now continue, ...

$$
\begin{aligned}
x & =\lim _{n \rightarrow \infty} s_{n} \\
& =\lim _{n \rightarrow \infty}\left(s_{n}+\frac{1}{2^{n}}\right)
\end{aligned}
$$

Note that $0 \leq x-s_{n}=\left|x-s_{n}\right| \leq \frac{1}{2^{n}}$.

