MthT 430 Projects Chap 7b - Three Doubtful Theorems if Numbers $=$ Q

While working on Chap7bproj, assume that we are in the rational world - the only numbers available are the rational numbers \mathbf{Q} - there are no irrational numbers!

We could still define limits and continuity for functions, e.g.,
$\epsilon-\delta$ Definition. The function f is continuous at a means: For every $\epsilon>0$, there is some $\delta>0$ such that, for all rational x, if $|x-a|<\delta$, then $|f(x)-f(a)|<\epsilon{ }^{1}$

We could also define continuity on intervals (of course the end points of closed intervals $[a, b]$ are rational).

We investigate the validity of the Three Hard Theorems in this context.
For these projects, assume that we are in the rational world. You are allowed to construct functions by formulas so that for all rational numbers, $x, f(x)$ is a rational number. The usual polynomial and rational functions with integer or rational coefficients will be continuous at all points where we do not try to divide by 0 . It is a deep result trigonometric functions, etc., are not allowed.

Continuous Functions on Intervals Have the Intermediate Value Property

Doubtful Theorem 1. If f is continuous on $[a, b]$ and $f(a)<0<f(b)$, then there is some x in $[a, b]$ such that $f(x)=0$.

1. Construct a function f on $[0,1]$ such that

- f is continuous on $[0,1]$,
- $f(0)<0<f(1)$,
- There is no $x \in[0,1]$ such that $f(x)=0$.

Hint: Use a variation of $x \longrightarrow x^{2}-2$.

[^0]
Continuous Functions on Closed Intervals are Bounded

Doubtful Theorem 2. If f is continuous on $[a, b]$, then f is bounded above on $[a, b]$, that is, there is some number N such that $f(x) \leq N$ for all x in $[a, b]$.
2. Construct a function f on $[0,1]$ such that

- f is continuous on $[0,1]$,
- $f(0)<0<f(1)$,
- f is not bounded on $[0,1]$.

Continuous Functions on Closed Intervals assume a Maximum Value for the Interval

Doubtful Theorem 3. If f is continuous on $[a, b]$, then there is a number y in $[a, b]$ such that $f(y) \geq f(x)$ for all x in $[a, b]$.
3. Construct a function f on $[0,1]$ such that

- f is continuous on $[0,1]$,
- f is bounded on $[0,1]$,
- There is no number y in $[0,1]$ such that $f(y) \geq f(x)$ for all x in $[0,1]$.

4. Construct a function f on $[0,1]$ such that

- f is continuous on $[0,1]$,
- $f(0)<0<f(1)$,
- There is no number y in $[0,1]$ such that $f(y) \geq f(x)$ for all x in $[0,1]$,
- There is no number y in $[0,1]$ such that $f(y) \leq f(x)$ for all x in $[0,1]$.

[^0]: ${ }^{1}$ Of course for now a, ϵ, δ, and x are all in \mathbf{Q}.

