MthT 430 Notes Chap7c Bounded Monotone Sequences Have Limits

BISHL: Bounded Increasing Sequences Have Limits

Theorem. Let $\{x_n\}_{n=1}^{\infty}$ be a bounded monotone increasing sequence; i.e.

$$x_1 \leq x_2 \leq \ldots$$

and there is a number M such that for n = 1, 2, ...,

$$x_n \leq M.$$

Then there is a number L such that

$$\lim_{n \to \infty} x_n = L.$$

Proof using (P13–BIN): Without loss of generality, we assume that

$$0 \le x_1 \le x_2 \le \ldots \le x_n \le \ldots < 1.$$

We will construct a binary expansion for L.

A picture is helpful!

Divide the interval [0, 1) into two halves.

Is there an n_1 such that $x_{n_1} \ge m_0 = \frac{1}{2} = 0.6$ bin 1?

If NO, let $c_1 = 0$, $a_1 = 0 = 0$. $bin c_1$, $b_1 = m_0 = a_1 + \frac{1}{2}$. If YES, let $c_1 = 1$, $a_1 = m_0 = \frac{1}{2} = 0$. $bin c_1$, $b_1 = a_1 + \frac{1}{2} = 1$.

In both cases, for $n \ge n_1$, $a_1 = 0$. $bin c_1 \le x_n \le b_1 = a_1 + \frac{1}{2^1}$ and $b_1 - a_1 = \frac{1}{2^1}$.

Next Divide the interval $[a_1, b_1) = \left[0._{\text{bin}}c_1, a_1 + \frac{1}{2^1}\right)$ into two halves.

Is there an $n_2 > n_1$ such that $x_{n_2} \ge m_1 = a_1 + \frac{1}{2^2}$?

If NO, let $c_2 = 0$, $a_2 = a_1 = 0$. $bin c_1 c_2$, $b_2 = m_1 = a_2 + \frac{1}{2^2}$. If YES, let $c_2 = 1$, $a_2 = m_1 = 0$. $bin c_1 c_2$, $b_2 = b_1 = a_2 + \frac{1}{2^2}$.

In both cases, for $n \ge n_2$, $a_2 = 0$. $bin c_1 c_2 \le x_n < b_2 = a_2 + \frac{1}{2^2}$ and $b_2 - a_2 = \frac{1}{2^2}$.

chap7c.pdf page 1/2

By recursion (on k), if $n_k > n_{k-1}, c_1, \ldots, c_k, a_k = 0.$ bin $c_1 \ldots c_k, b_k = a_k + \frac{1}{2^k}$ have been defined so that for $n \ge n_k$,

$$a_k = 0.$$
_{bin} $c_1 \dots c_k \le x_n < b_k = a_k + \frac{1}{2^k},$

divide the interval $[a_k, b_k)$ into two halves.

Is there an $n_{k+1} > n_k$ such that $x_{n_{k+1}} \ge m_k = a_k + \frac{1}{2^{k+1}}$?

If NO, let $c_{k+1} = 0$, $a_{k+1} = a_k = 0$._{bin} $c_1c_2...c_{k+1}$, $b_{k+1} = m_k = a_{k+1} + \frac{1}{2^{k+1}}$. If YES, let $c_{k+1} = 1$, $a_{k+1} = m_k = 0$._{bin} $c_1c_2...c_{k+1}$, $b_{k+1} = b_k = a_{k+1} + \frac{1}{2^{k+1}}$.

In both cases, $n_{k+1} > n_k$, c_1, \ldots, c_k , c_{k+1} , $a_{k+1} = 0$. $bin c_1 \ldots c_k c_{k+1}$, $b_{k+1} = a_{k+1} + \frac{1}{2^{k+1}}$ have been defined so that for $n \ge n_{k+1}$,

$$a_{k+1} = 0.$$
_{bin} $c_1 \dots c_{k+1} \le x_n < b_{k+1} = a_{k+1} + \frac{1}{2^{k+1}},$

Let

$$L = 0 \cdot \lim_{k \to \infty} c_1 \dots c_k \dots$$
$$= \lim_{k \to \infty} a_k$$
$$= \lim_{k \to \infty} b_k$$

We have that $L = \lim_{n \to \infty} x_n$ since for all k, and $n > n_k$,

$$0 \le L - x_n \le b_k - x_n \le b_k - a_k \le \frac{1}{2^k}.$$