MthT 430 Notes Chap8a Least Upper Bounds and Binary Expansions Modified October 29, 2007

Bounds and Least Upper Bounds

Definition. A set A of real numbers is **bounded above** if there is a number x such that

 $x \ge a$ for every a in A.

Such a number x is called an **upper bound** for A.

Definition. A number x is a least upper bound for a set A if

- x is an upper bound for A, (1)
- if y is an upper bound for A, then $x \le y$ (2)

Such a number x is also called the **supremum** for A and sometimes denoted by $\sup A$ or $\lim A$.

Definition. A number x is a greatest element of a non empty set A if

 $\begin{cases} x \in A, \\ x \text{ is an upper bound for } A. \end{cases}$

Examples

• The set [0, 1] has least upper bound 1.

 $\sup [0, 1] = 1.$

The number 1 is also the greatest element of [0, 1].

• If a nonempty set A has a greatest element a_{\max} , then

$$\sup A = a_{\max}.$$

• Let A = (0, 1). Then

 $\sup A = 1.$

The set A has no greatest element.

• Let

$$A = \left\{ x \in \mathbf{Q} \mid \mathbf{x}^2 < \mathbf{2} \right\}$$
$$= \left\{ x \in \mathbf{Q} \mid \mathbf{x}^2 \le \mathbf{2} \right\}.$$

Then A has no greatest element.

Least Upper Bound Property for Real Numbers R

The following property of real numbers cannot be proved from (P1) - (P12).

(P13) or (P13–LUB) Least Upper Bound Property. If A is a non empty set of real numbers, and A is bounded above, then A has a least upper bound.

N.B. A has a least upper bound as to be interpreted as there is a number x such that x is a least upper bound for A.

Note that (P13) does not hold if the only numbers available were \mathbf{Q} , the rational numbers. There is no *rational number* which is the least upper bound of the set

$$A_{\sqrt{2}} = \{ x \mid x \in \mathbf{Q} \text{ and } x^2 < 2 \}.$$

Relation between Least Upper Bound and Binary Expansion

Our starting point is that every binary expansion represents a real number. As we said in MthT 430 Notes Chapter 6a Binary Expansions and Arguments

• Every binary expansion represents a real number x:

$$x = \pm N \cdot_{\text{bin}} c_1 c_2 \dots,$$
$$c_k \in \{0, 1\}.$$

This is the statement that every infinite series of the form

$$c_1 2^{-1} + c_2 2^{-2} + \dots, \quad c_k \in \{0, 1\},$$

converges.

Constructing the Binary Expansion of a Least Upper Bound

We give a *folding string argument* to find the *binary expansion* of sup A.

Let A be a nonempty set of real numbers which is bounded above. Without loss of generality (WLG), we assume that A is contained in $[0, 1) \equiv [a_0, b_0)$. Then

There is a an upper bound
$$1 = b_0$$
 for A , (1)

There is a an
$$x_0 \in A, \ 0 = a_0 \le x_0 \le 1 = b_0.$$
 (2)

Now we have that $\hat{y} = \sup A$, if it exists, satisfies $0 = 0._{\text{bin}} 0 \le x_0 \le \hat{y} \le b_0 = 1._{\text{bin}} 0$.

If $x_0 = b_0$, STOP!

$$\sup A = b_0.$$

A has a greatest element b_0 .

If $x_0 < b_0$, we divide the interval $[a_0, b_0)$ into two intervals $[0, \frac{1}{2})$ and $[\frac{1}{2}, 1)$.

Ask the question: Is $m_0 = (a_0 + b_0)/2$ an upper bound for A?

If the answer is YES, m_0 is an upper bound for A, select the left interval $\left[0, \frac{1}{2}\right] = [a_1, b_1)$ by

$$a_1 = 0 = a_0,$$

 $b_1 = m_0 = \frac{1}{2^1} = a_1 + \frac{1}{2^1}.$

Then b_1 is an upper bound for A. Let $c_1 = 0$ so that

$$a_1 = \cdot_{\text{bin}} c_1,$$

 $b_1 = a_1 + \frac{1}{2^1}.$

If the answer is NO, there an $x_1 \in A$, such that $m_0 = 0$. $bin 1 < x_1 \le b_0 = 1$. Select the right interval $\left[\frac{1}{2}, 1\right) = [a_1, b_1)$ by

$$a_1 = m_0,$$

$$b_1 = b_0.$$

Then b_1 is an upper bound for A. Let $c_1 = 1$ so that

$$a_1 = \cdot_{\text{bin}} c_1,$$

 $b_1 = a_1 + \frac{1}{2^1}.$

In both cases we have constructed an interval $[a_1, b_1)$ such that

$$a_1 = 0.$$
_{bin} c_1 ,
 $b_1 = a_1 + \frac{1}{2^1}$,

such that

 $\begin{cases} a_1 \leq \text{any upper bound for } A, \\ b_1 \text{ is an upper bound for } A. \end{cases}$

Now suppose that $c_1, \ldots, c_k, a_k = 0.$ bin $c_1 \ldots c_k, b_1, \ldots, b_k$ have been chosen so that

$$a_k = 0._{\text{bin}} c_1 \dots c_k,$$

$$b_k = a_k + \frac{1}{2^k},$$

and

 $\begin{cases} a_k \leq \text{any upper bound for } A, \\ b_k \text{ is an upper bound for } A. \end{cases}$

If $b_k \in A$, STOP!

 $\sup A = b_k.$

A has a greatest element b_k .

If $b_k \notin A$, divide the interval $[a_k, b_k)$ into two parts by taking the midpoint

$$m_k = \frac{a_k + b_k}{2}$$
$$= a_k + \frac{1}{2^{k+1}}$$

Ask the question: Is m_k an upper bound for A?

If YES, select the left interval $[a_k, m_k)$ by defining

$$c_{k+1} = 0,$$

$$a_{k+1} = a_k$$

$$= 0._{\text{bin}} c_1 \dots c_k c_{k+1},$$

$$b_{k+1} = m_k$$

$$= a_{k+1} + \frac{1}{2^{k+1}}.$$

If NO, select the right interval $[m_k, b_k)$ by defining

$$c_{k+1} = 1,$$

$$a_{k+1} = m_k$$

$$= 0._{\text{bin}} c_1 \dots c_k c_{k+1}$$

$$= a_k + \frac{1}{2^{k+1}},$$

$$b_{k+1} = b_k$$

$$= a_{k+1} + \frac{1}{2^{k+1}}.$$

In both cases $c_1, \ldots, c_k, c_{k+1}, a_1, \ldots, a_k, a_{k+1}, b_1, \ldots, b_k, b_{k+1}$ have been chosen so that

$$a_{k+1} = 0.$$
_{bin} $c_1 \dots c_k c_{k+1},$
 $b_{k+1} = a_{k+1} + \frac{1}{2^{k+1}},$

chap8a.pdf page 4/8

and

 $\begin{cases} a_{k+1} \leq \text{any upper bound for } A, \\ b_{k+1} \text{ is an upper bound for } A. \end{cases}$

Let

$$s = \lim_{k \to \infty} a_k$$

= 0.bin c_1 c_2 ...
= lim b_k.

Then

- s is an upper bound for A. Why? Fix $x \in A$. Then for all $k, x \leq b_k$, and so $x \leq \lim_{k \to \infty} b_k = s$.
- $s = \sup A$. Why?

N.B. Even if a system of numbers (such as \mathbf{Q}), satisfies (P1 – P12), without assuming P13–LUB, the above construction of the sequences c_1, \ldots, a_1, \ldots , and b_1, \ldots , can be accomplished. So – if, in fact, all binary expansions converge to a number in the system, the supremum of the set A has been constructed. We refer to the property all binary expansions converge to a number in the system as (P-13–BIN).

BISHL: Bounded Increasing Sequences Have Limits

A consequence of (P13-LUB) is that Bounded Increasing Sequences Have Limits.

Theorem. Let $\{x_n\}_{n=1}^{\infty}$ be a bounded monotone nondecreasing sequence; i.e.

 $x_1 \leq x_2 \leq \ldots,$

and there is a number M such that for n = 1, 2, ...,

 $x_n \leq M.$

Then there is a number L such that

$$\lim_{n \to \infty} x_n = L.$$

Proof using (P13–LUB): Try

$$L = \sup_n x_n.$$

For all $n, x_n \leq L$ (*L* is an upper bound). Given $\epsilon > 0$, there is a natural number *N* such that $L - \epsilon < x_N \leq N$ ($L - \epsilon$ is not an upper bound!). Then for all $n \geq N$,

$$L - \epsilon < x_n \le L,$$

or

$$|x_n - L| = L - x_n < \epsilon.$$

Convergence (Meaning) of Binary Expansions implies (P13–LUB)

Let us state a variation of (P13–LUB).

(P13-BIN) – Binary Expansions Converge. Every binary expansion represents a real number x: every infinite series of the form

$$c_1 2^{-1} + c_2 2^{-2} + \dots, \quad c_k \in \{0, 1\},$$

converges to a real number $x, 0 \le x \le 1$.

We write

$$x = \pm N \cdot_{\text{bin}} c_1 c_2 \dots,$$
$$c_k \in \{0, 1\}.$$

Another way to say this is that every infinite series of the form

$$\sum_{k=1}^{\infty} c_k 2^{-k}, \quad c_k \in \{0, 1\},$$

converges to a real number x:

$$x = \lim_{N \to \infty} \sum_{k=1}^{N} c_k 2^{-k}.$$

(P13–BIN) Implies (P13–LUB)

We have shown: If the real numbers (or any number system!) satisfies (P1 - P12) and (P13-BIN), then this set of numbers satisfies (P1 - P12) and (P13-LUB).

LUB2BIN: (P13–LUB) Implies (P13–BIN)

The *converse* is also true: If the real numbers (or any number system!) satisfies (P1 - P12) and (P13-LUB), then this set of numbers satisfies (P1 - P12) and (P13-BIN). This would follow if we could show that the nondecreasing sequence (partial sums)

$$s_N = \sum_{k=1}^N c_k 2^{-k}, \quad c_k \in \{0, 1\},$$

is bounded above. Then

$$x = \sup_{N} \sum_{k=1}^{N} c_k 2^{-k}$$
$$= \lim_{N \to \infty} \sum_{k=1}^{N} c_k 2^{-k}$$
$$= \sum_{k=1}^{\infty} c_k 2^{-k}.$$

chap8a.pdf page 6/8

To show that the sequence of partial sums $\{s_N\}$ is *bounded above*, we begin with a BARE HANDS calculation on a geometric series.

Lemma: Geometric Series – BARE HANDS. If |r| < 1,

$$\sum_{k=0}^{N} r^{k} = \frac{1 - r^{N+1}}{1 - r},\tag{(\clubsuit)}$$

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}.$$
 (**\Phi**)

Proof: To show (\clubsuit) ,

$$(1-r)(1+\ldots+r^N) = 1-r^{N+1},$$

and for $1 - r \neq 0$, divide by 1 - r.

To show (\blacklozenge), if |r| < 1,

$$\lim_{N \to \infty} r^{N+1} = 0,$$
$$\sum_{k=0}^{\infty} r^k = \lim_{N \to \infty} \frac{1 - r^{N+1}}{1 - r}.$$
$$= \frac{1}{1 - r}.$$

Theorem. Property (P13–LUB) implies Property (P13–BIN).

Proof: Assuming Property (P13–LUB), and of course Properties (P1 - P12), we show that the non decreasing sequence

$$s_N = \sum_{k=1}^N c_k 2^{-k}, \quad c_k \in \{0, 1\},$$

is bounded above:

$$\sum_{k=1}^{N} c_k 2^{-k} \le \sum_{k=1}^{N} 1 \cdot 2^{-k}$$
$$\le \sum_{k=1}^{\infty} 1 \cdot 2^{-k}$$
$$= \frac{1}{1 - \frac{1}{2}} - 1$$
$$= 1.$$

Thus

$$\sum_{k=1}^{\infty} c_k 2^{-k} = \lim_{N \to \infty} \sum_{k=1}^{N} c_k 2^{-k}$$
$$= \sup_N \sum_{k=1}^{N} c_k 2^{-k}$$
$$\leq 1.$$