MthT 430 Projects Chap 8b - Intermediate Value Property

1. Let f be a continuous function on $[0,1]$ such that

- $f(0)>0$,
- $f(1)<1$.

Draw a graph of several (not too complicated) continuous functions, f, satisfying the two properties to decide whether there is always an $x, 0<x<1$, such that $f(x)=x$.

Now prove that there is an $x, 0<x<1$, such that $f(x)=x$.
See also Spivak, Chapter 7, Problem 11.
2. Suppose that

- f and g are continuous functions on $[0,1]$
- $f(0)>g(0)$,
- $f(1)<g(1)$.

Draw graphs of several pairs of continuous functions, f, g, satisfying the three properties to decide whether there is always an $x, 0<x<1$, such that $f(x)=g(x)$.

Now prove that if f, g, are continuous there is an $x, 0<x<1$, such that $f(x)=g(x)$.
3. Suppose we are working with a number system (such as the rational numbers \mathbf{Q}) which satisfies (P1-P12), but does not satisfy (P13-LUB); id est, there is a non empty set A of numbers, A is bounded above, but A does not have a least upper bound. For this A, let

$$
B_{A} \equiv\{b \mid b \quad \text { is an upper bound for } A .\}
$$

Define

$$
f(x)= \begin{cases}1, & x \in B_{A} \\ -1, & x \notin B_{A}\end{cases}
$$

Show that f is continuous at all x, but does not satisfy the Intermediate Value Property (IVP).

Thus NOT (P13-LUB) implies NOT (P13-CFIVP). This shows that (P13-CFIVP) implies (P13-LUB) as stated in chap8b.tex.

See http://www.math.uic.edu/~1ewis/mtht430/chap8b.pdf\#CFIVP

