MthT 430 Notes Chapter 8d Least Upper Bounds

Least Upper Bounds

Recall the definitions of upper bound and least upper bound.

Definition. A set A of real numbers is bounded above if there is a number x such that $x \geq a$ for every a in A.
Such a number x is called an upper bound for A.

Definition. A number x is a least upper bound for a set A if
x is an upper bound for A,
if y is an upper bound for A, then $x \leq y$.
Such a number x is also called the supremum for A and sometimes denoted by $\sup A$ or $\operatorname{lub} A$.

There is an equivalent definition of least upper bound.

Definition. A number x is a least upper bound for a set A if

$$
\left\{\begin{array}{l}
x \text { is an upper bound for } A, \tag{1}\\
\text { For every } \epsilon>0, \text { there is an } x_{\epsilon} \in A \text { such that } x-\epsilon<x_{\epsilon} \leq x
\end{array}\right.
$$

Such a number x is also called the supremum for A and sometimes denoted by sup A or $\operatorname{lub} A$.

To show that the two definitions are equivalent, we must prove the following If and Only If Theorem:

Theorem. If x is an upper bound for A, then

$$
\begin{equation*}
\text { If } y \text { is an upper bound for } A \text {, then } x \leq y \text {. } \tag{2}
\end{equation*}
$$

if and only if

$$
\text { For every } \epsilon>0 \text {, there is an } x_{\epsilon} \in A \text { such that } x-\epsilon<x_{\epsilon} \leq x
$$

Proof: First $(2) \Rightarrow\left(2^{\prime}\right)$. Assume (2). The proof is by contradiction. Assume there IS an $\epsilon>0$ such that there is no $x_{\epsilon} \in A$ such that $x-\epsilon<x_{\epsilon} \leq x$. But then $x-\epsilon$ would be an upper bound for A which is less than x.

Second $\left(2^{\prime}\right) \Rightarrow(2)$. Again use contradiction. If (2) is false and (2) is true, there is an upper bound b for A which satisfies $b<x$. Let $\epsilon=x-b>0$. There is no $x_{\epsilon} \in A$ such that $x-\epsilon=b<x_{\epsilon} \leq x$.

