MthT 430 Chapter 9a Spivak Problem Remarks

7. $f(x)=x^{3} \cdot f^{\prime}(x)=3 x^{2}$
(a) $f^{\prime}(9)=3 \cdot 9=27$.
(b) $f^{\prime}\left(3^{2}\right)=f^{\prime}(9)=27$ or $f^{\prime}\left(3^{2}\right)=3 \cdot\left(3^{2}\right)^{2}=27$.
(c) $f^{\prime}\left(a^{2}\right)=3 \cdot\left(a^{2}\right)^{2}=3 a^{4} ; f^{\prime}\left(x^{2}\right)=3 \cdot\left(x^{2}\right)^{2}=3 x^{4}$.
(d) $f(x)=x^{3} ; f^{\prime}(x)=3 x^{2} ; f^{\prime} x^{2}=3 x^{4} . g(x)=f\left(x^{2}\right)=x^{6} ; g^{\prime}(x)=6 x^{5}$.
8.

(a) $g(x)=f(x+c)$.

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+c+h)-f(x+c)}{h} \\
& =f^{\prime}(x+c) .
\end{aligned}
$$

(b) $g(x)=f(c x)$. For $c \neq 0$,

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(c(x+h))-f(c x)}{h} \\
& =\lim _{c h \rightarrow 0} c \cdot \frac{f(c x+c h) 0-f(c x)}{c h} \\
& =c \cdot f^{\prime}(c x) .
\end{aligned}
$$

10. $f(x)=g(t+x) . f^{\prime}(a)=g^{\prime}(t+a) ; f^{\prime}(x)=g^{\prime}(t+x)$.

$$
F(t)=g(t+x) . F^{\prime}(a)=g^{\prime}(a+x) ; F^{\prime}(x)=g^{\prime}(x+x) .
$$

11.

(a) If s^{\prime} is proportional to s, there is a constant k such that $s^{\prime}(t)=k s(t)$. For $s(t) \neq 0$, $s^{\prime}(t) / s(t)$ is constant.

If $S(t)=c t^{2}, S^{\prime}(t)=2 c t$. For $t \neq 0, S(t) \neq 0$, and $S^{\prime}(t) / S(t)=2 / t$, which is not constant.
(b) If $s(t)=(a / 2) t^{2}$,

$$
\begin{aligned}
s^{\prime}(t) & =a t \\
s^{\prime \prime}(t) & =a
\end{aligned}
$$

Note that

$$
\begin{aligned}
\left(s^{\prime}(t)\right)^{2} & =(a t)^{2} \\
& =2 a s(t)
\end{aligned}
$$

12. Speed limit at position x is $L(x)$. Position of A at time t is denoted by $a(t)$.
(a) A travels at the speed limit means: For all $t, a^{\prime}(t)=L(a(t))$.
(b) Suppose A travels at the speed limit and $b(t)=a(t-1)$. Then $b^{\prime}(t)=a^{\prime}(t-1)=$ $L(a(t-1))=L(b(t))$, and B travels at the speed limit.
(c) If $b(t)=a(t)-k, b^{\prime}(t)=a^{\prime}(t)=L(a(t))$. Then $b^{\prime}(t)=L(b(t))$ for all t, if and only if $L(b(t))=L(a(t)-k)=L(a(t))$, or $L(x)$ is periodic with period k.
13. f is the oneoverq function. If r is a rational number, f is not continuous at r. Thus f is not differentiable at r.

If a is an irrational number, $f(a)=0$. If h is rational, the difference quotient is 0 . Thus if $f^{\prime}(a)$ exists, $f^{\prime}(a)=0$.

Let a have the nonrepeating decimal expansion $m \cdot a_{1} a_{2} \ldots a_{n} \ldots$. Define the irrational number $h_{n}=-0.00 \ldots 0 a_{n} a_{n+1} \ldots$, so that $a+h_{n}=m . a_{1} a_{2} \ldots a_{n-1}$.

Now $\left|h_{n}\right| \leq 10^{1-n},\left|1 / h_{n}\right| \geq 10^{n-1}$, and $f\left(a+h_{n}\right)=1 / q$ with $q \leq 10^{n-1}$ so that $\left|f\left(a+h_{n}\right)\right|=1 / q \geq 10^{1-n}$.

It follows that

$$
\begin{aligned}
\left|\frac{f\left(a+h_{n}\right)-f(a)}{h_{n}}\right| & =\frac{\left|f\left(a+h_{n}\right)\right|}{\left|h_{n}\right|} \\
& =\frac{1 / q}{\left|h_{n}\right|} \geq 10^{1-n} 10^{n-1}=1
\end{aligned}
$$

Conclude that $f^{\prime}(a)$ does not exist.

