MthT 430 Chapter 9a Spivak Problem Remarks

7. $f(x) = x^3$. $f'(x) = 3x^2$ (a) $f'(9) = 3 \cdot 9 = 27$. (b) $f'(3^2) = f'(9) = 27$ or $f'(3^2) = 3 \cdot (3^2)^2 = 27$. (c) $f'(a^2) = 3 \cdot (a^2)^2 = 3a^4$; $f'(x^2) = 3 \cdot (x^2)^2 = 3x^4$. (d) $f(x) = x^3$; $f'(x) = 3x^2$; $f'x^2 = 3x^4$. $g(x) = f(x^2) = x^6$; $g'(x) = 6x^5$. 8.

(a)
$$g(x) = f(x+c)$$
.

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$
$$= \lim_{h \to 0} \frac{f(x+c+h) - f(x+c)}{h}$$
$$= f'(x+c).$$

(b)
$$g(x) = f(cx)$$
. For $c \neq 0$,

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$
$$= \lim_{h \to 0} \frac{f(c(x+h)) - f(cx)}{h}$$
$$= \lim_{ch \to 0} c \cdot \frac{f(cx+ch)0 - f(cx)}{ch}$$
$$= c \cdot f'(cx).$$

10.
$$f(x) = g(t+x)$$
. $f'(a) = g'(t+a)$; $f'(x) = g'(t+x)$.
 $F(t) = g(t+x)$. $F'(a) = g'(a+x)$; $F'(x) = g'(x+x)$.

11.

(a) If s' is proportional to s, there is a constant k such that s'(t) = ks(t). For $s(t) \neq 0$, s'(t)/s(t) is constant.

If $S(t) = ct^2$, S'(t) = 2ct. For $t \neq 0$, $S(t) \neq 0$, and S'(t)/S(t) = 2/t, which is not constant.

(b) If $s(t) = (a/2)t^2$,

$$s'(t) = at.$$

$$s''(t) = a.$$

Note that

$$(s'(t))^{2} = (at)^{2}$$
$$= 2a s(t)$$

- 12. Speed limit at position x is L(x). Position of A at time t is denoted by a(t).
- (a) A travels at the speed limit means: For all t, a'(t) = L(a(t)).
- (b) Suppose A travels at the speed limit and b(t) = a(t-1). Then b'(t) = a'(t-1) = L(a(t-1)) = L(b(t)), and B travels at the speed limit.
- (c) If b(t) = a(t) k, b'(t) = a'(t) = L(a(t)). Then b'(t) = L(b(t)) for all t, if and only if L(b(t)) = L(a(t) k) = L(a(t)), or L(x) is periodic with period k.
- 18. f is the *oneoverq* function. If r is a rational number, f is not continuous at r. Thus f is not differentiable at r.

If a is an irrational number, f(a) = 0. If h is rational, the difference quotient is 0. Thus if f'(a) exists, f'(a) = 0.

Let a have the nonrepeating decimal expansion $m.a_1a_2...a_n...$ Define the irrational number $h_n = -0.00...0a_na_{n+1}...$, so that $a + h_n = m.a_1a_2...a_{n-1}$.

Now $|h_n| \leq 10^{1-n}$, $|1/h_n| \geq 10^{n-1}$, and $f(a+h_n) = 1/q$ with $q \leq 10^{n-1}$ so that $|f(a+h_n)| = 1/q \geq 10^{1-n}$.

It follows that

$$\left|\frac{f(a+h_n) - f(a)}{h_n}\right| = \frac{|f(a+h_n)|}{|h_n|}$$
$$= \frac{1/q}{|h_n|} \ge 10^{1-n} 10^{n-1} = 1.$$

Conclude that f'(a) does not exist.