MthT 430 Notes Chapter 9 Limits and Order
Limits and Order

For functions of a real variable, the derivative is defined as

) -t LA @)
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which means that the difference

fla+a) - @),
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is small if Az is small and not 0 (for which the quotient is not obviously defined).

Multiplying the remainder by Az, we obtain that
flx+ Az) — f(x) — f/(x)Az = small- A,

with the right hand side (RHS) of the equation is “much smaller than Az” in the precise
sense

RHS
11m =
Az—0 |AZL’|

Another formal advantage is that the equation is also defined and true for Az = 0.

Definition. An expression (function) ¢(x) is little o of z as x — 0, written ¢(x) = o(x)
las x — 0], if

lim M = 0.

z—0 |.’L‘|

If we are not worried about the particular details of ¢(z), we write ¢(z) = o (z) [as x — 0].

With this convention, the definition of differentiability and the derivative takes the con-
venient form

flx+ Az) = f(z) + f'(z) - Az + o (Ax).

In a similar way, if lim,_,¢ ¥ (z) = 0, we write ¢(x) = o (1) with the precise meaning that

lim M

z—0 1

=0.

Definition. Let g(x) be nonzero for x near and not equal 0. Then a function ¢(x) is little
o of q(x), written ¢(x) = o (q(x)), if

lim o)

=0.
=0 [¢(z)]
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Then a function ¢(x) is big O of q(x), written ¢(x) = O (q(x)), if

o)
lg(2)]

is bounded as x — 0.

N.B. We are assuming that, for z small enough and # 0, both ¢(z) and ¢(z) are defined
and ¢q(x) # 0. If g(z) might possibly be 0 for some x near 0, we also propose an € — ¢
definition of little o(q):

Definition. A function f = o(q) as x — 0 means For every ¢ > 0, there is a § > 0 such
that if 0 < |x| < 6, then |f(x)| < €|q(z)]

With this convention, continuity of a function f(z) can be expressed by
[z + Az) = f(z) +o(1)
as Az — 0.
A real valued function of a real variable x is differentiable at z with derivative f’(x) if
flz+ Az) = f(z) + f(z)Az + o (Ax)
as Az — 0.
Local boundedness of a function can be expressed as f(x + Ax) = O (1) as Az — 0.

There is a formal calculus for handling sums and products for functions which are little o or
big O of one (or several) ¢q. Verify that O (1)-0 (Az) = o (Ax); i.e., the product of a bounded
function and a function which is o (Az) is o (Az). Similarly o (Az) £ o (Az) = o (Az).

Proof of the Chain Rule

The Chain Rule. Let g(z) be differentiable at z, and let f(w) be differentiable at
w = ¢g(z). Then h(z) = f(g(2)) is differentiable at z and

W) = L He) = (6(2) 4.

Proof: We show that

h(z 4+ Az) = f(g(z + Az))
= f(9(2)) + f'(9(2)) - g'(2) - Az + 0 (Az).

as Az — 0.
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Let
Ag(z) = g(z + A2) — g(=) = ¢'(2)Az + 0 (Az).

We are assuming that

g(z+ Az)=g(2) +4¢'(2) - Az +0(Az),
f(g(2) + Ag(2)) = f(g(2)) + f(9(2)) - Ag(2) + 0 (Ag(2)) -

Since
Ag(z) = g'(2)Az + 0 (A2)
=0 (Az),
0(Ag(z)) = 0(0 (Az))

— 0(Az),

we have
flg(z+Az)) = f(9(2) + f(9(2) - ¢'(2) - Az + 0 (Az).
Remarks

The concepts little o and big O are also useful as the argument z — oco. For example we
write 2 = o (e®) as © — oo with the precise meaning

The concepts little o and big O are also useful for infinite limits. For example we write
In|z| =0 (1/z) as x — 0 with the precise meaning

In |z|

li =0.

chap9order.pdf page 3/3



