
MthT 430 Notes Chapter 9 Limits and Order

Limits and Order

For functions of a real variable, the derivative is defined as

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x
,

which means that the difference

f(x+ ∆x)− f(x)

∆x
− f ′(x)

is small if ∆x is small and not 0 (for which the quotient is not obviously defined).

Multiplying the remainder by ∆x, we obtain that

f(x+ ∆x)− f(x)− f ′(x)∆x = small ·∆x,

with the right hand side (RHS) of the equation is “much smaller than ∆x” in the precise
sense

lim
∆x→0

RHS

|∆x|
= 0.

Another formal advantage is that the equation is also defined and true for ∆x = 0.

Definition. An expression (function) φ(x) is little o of x as x→ 0, written φ(x) = o (x)
[as x→ 0], if

lim
x→0

φ(x)

|x|
= 0.

If we are not worried about the particular details of φ(x), we write φ(x) = o (x) [as x→ 0].

With this convention, the definition of differentiability and the derivative takes the con-
venient form

f(x+ ∆x) = f(x) + f ′(x) ·∆x+ o (∆x) .

In a similar way, if limx→0 ψ(x) = 0, we write ψ(x) = o (1) with the precise meaning that

lim
x→0

ψ(x)

1
= 0.

Definition. Let q(x) be nonzero for x near and not equal 0. Then a function φ(x) is little
o of q(x), written φ(x) = o (q(x)), if

lim
x→0

φ(x)

|q(x)|
= 0.
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Then a function φ(x) is big O of q(x), written φ(x) = O (q(x)), if

φ(x)

|q(x)|

is bounded as x→ 0.

N.B. We are assuming that, for x small enough and 6= 0, both φ(x) and q(x) are defined
and q(x) 6= 0. If q(x) might possibly be 0 for some x near 0, we also propose an ε − δ
definition of little o(q):

Definition. A function f = o(q) as x → 0 means For every ε > 0, there is a δ > 0 such
that if 0 < |x| < δ, then |f(x)| ≤ ε|q(x)|

With this convention, continuity of a function f(x) can be expressed by

f(x+ ∆x) = f(x) + o (1)

as ∆x→ 0.

A real valued function of a real variable x is differentiable at x with derivative f ′(x) if

f(x+ ∆x) = f(x) + f ′(x)∆x+ o (∆x)

as ∆x→ 0.

Local boundedness of a function can be expressed as f(x+ ∆x) = O (1) as ∆x→ 0.

There is a formal calculus for handling sums and products for functions which are little o or
big O of one (or several) q. Verify thatO (1)·o (∆x) = o (∆x); i.e., the product of a bounded
function and a function which is o (∆x) is o (∆x). Similarly o (∆x)± o (∆x) = o (∆x).

Proof of the Chain Rule

The Chain Rule. Let g(z) be differentiable at z, and let f(w) be differentiable at
w = g(z). Then h(z) = f(g(z)) is differentiable at z and

h′(z) =
d

dz
f(g(z)) = f ′ (g(z)) · g′(z).

Proof: We show that

h(z + ∆z) = f(g(z + ∆z))

= f(g(z)) + f ′(g(z)) · g′(z) ·∆z + o (∆z) .

as ∆z → 0.
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Let
∆g(z) = g(z + ∆z)− g(z) = g′(z)∆z + o (∆z) .

We are assuming that

g(z + ∆z) = g(z) + g′(z) ·∆z + o (∆z) ,

f(g(z) + ∆g(z)) = f(g(z)) + f ′(g(z)) ·∆g(z) + o (∆g(z)) .

Since
∆g(z) = g′(z)∆z + o (∆z)

= O (∆z) ,

o (∆g(z)) = o (O (∆z))

= o (∆z) ,

we have
f(g(z + ∆z)) = f(g(z)) + f ′(g(z)) · g′(z) ·∆z + o (∆z) .

Remarks

The concepts little o and big O are also useful as the argument x→∞. For example we
write x2 = o (ex) as x→∞ with the precise meaning

lim
x→∞

x2

ex
= 0.

The concepts little o and big O are also useful for infinite limits. For example we write
ln |x| = o (1/x) as x→ 0 with the precise meaning

lim
x→0

ln |x|
1/x

= 0.
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