MthT 430 Notes Chapter 9 Limits and Order

Limits and Order

For functions of a real variable, the derivative is defined as

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x},$$

which means that the difference

$$\frac{f(x + \Delta x) - f(x)}{\Delta x} - f'(x)$$

is small if Δx is small and not 0 (for which the quotient is not obviously defined).

Multiplying the remainder by Δx , we obtain that

$$f(x + \Delta x) - f(x) - f'(x)\Delta x = small \cdot \Delta x,$$

with the right hand side (**RHS**) of the equation is "much smaller than Δx " in the precise sense

$$\lim_{\Delta x \to 0} \frac{\mathbf{RHS}}{|\Delta x|} = 0$$

Another formal advantage is that the equation is also defined and true for $\Delta x = 0$.

Definition. An expression (function) $\phi(x)$ is *little o of* x as $x \to 0$, written $\phi(x) = o(x)$ [as $x \to 0$], if

$$\lim_{x \to 0} \frac{\phi(x)}{|x|} = 0$$

If we are not worried about the particular details of $\phi(x)$, we write $\phi(x) = o(x)$ [as $x \to 0$].

With this convention, the definition of differentiability and the derivative takes the convenient form

$$f(x + \Delta x) = f(x) + f'(x) \cdot \Delta x + o(\Delta x)$$

In a similar way, if $\lim_{x\to 0} \psi(x) = 0$, we write $\psi(x) = o(1)$ with the precise meaning that

$$\lim_{x \to 0} \frac{\psi(x)}{1} = 0.$$

Definition. Let q(x) be nonzero for x near and not equal 0. Then a function $\phi(x)$ is little o of q(x), written $\phi(x) = o(q(x))$, if

$$\lim_{x \to 0} \frac{\phi(x)}{|q(x)|} = 0$$

chap9order.pdf page 1/3

Then a function $\phi(x)$ is big O of q(x), written $\phi(x) = O(q(x))$, if

$$\frac{\phi(x)}{|q(x)|}$$

is bounded as $x \to 0$.

N.B. We are assuming that, for x small enough and $\neq 0$, both $\phi(x)$ and q(x) are defined and $q(x) \neq 0$. If q(x) might possibly be 0 for some x near 0, we also propose an $\epsilon - \delta$ definition of *little* o(q):

Definition. A function f = o(q) as $x \to 0$ means For every $\epsilon > 0$, there is a $\delta > 0$ such that if $0 < |x| < \delta$, then $|f(x)| \le \epsilon |q(x)|$

With this convention, continuity of a function f(x) can be expressed by

$$f(x + \Delta x) = f(x) + o(1)$$

as $\Delta x \to 0$.

A real valued function of a real variable x is differentiable at x with derivative f'(x) if

$$f(x + \Delta x) = f(x) + f'(x)\Delta x + o(\Delta x)$$

as $\Delta x \to 0$.

Local boundedness of a function can be expressed as $f(x + \Delta x) = O(1)$ as $\Delta x \to 0$.

There is a formal calculus for handling sums and products for functions which are *little* o or *big* O of one (or several) q. Verify that $O(1) \cdot o(\Delta x) = o(\Delta x)$; i.e., the product of a bounded function and a function which is $o(\Delta x)$ is $o(\Delta x)$. Similarly $o(\Delta x) \pm o(\Delta x) = o(\Delta x)$.

Proof of the Chain Rule

The Chain Rule. Let g(z) be differentiable at z, and let f(w) be differentiable at w = g(z). Then h(z) = f(g(z)) is differentiable at z and

$$h'(z) = \frac{d}{dz}f(g(z)) = f'(g(z)) \cdot g'(z).$$

Proof: We show that

$$h(z + \Delta z) = f(g(z + \Delta z))$$

= $f(g(z)) + f'(g(z)) \cdot g'(z) \cdot \Delta z + o(\Delta z).$

as $\Delta z \to 0$.

chap9order.pdf page 2/3

Let

$$\Delta g(z) = g(z + \Delta z) - g(z) = g'(z)\Delta z + o(\Delta z).$$

We are assuming that

$$g(z + \Delta z) = g(z) + g'(z) \cdot \Delta z + o(\Delta z),$$

$$f(g(z) + \Delta g(z)) = f(g(z)) + f'(g(z)) \cdot \Delta g(z) + o(\Delta g(z)).$$

Since

$$\Delta g(z) = g'(z)\Delta z + o(\Delta z)$$

= $O(\Delta z)$,
 $o(\Delta g(z)) = o(O(\Delta z))$
= $o(\Delta z)$,

we have

$$f(g(z + \Delta z)) = f(g(z)) + f'(g(z)) \cdot g'(z) \cdot \Delta z + o(\Delta z).$$

Remarks

The concepts *little* o and *big* O are also useful as the argument $x \to \infty$. For example we write $x^2 = o(e^x)$ as $x \to \infty$ with the precise meaning

$$\lim_{x \to \infty} \frac{x^2}{e^x} = 0.$$

The concepts *little* o and *big* O are also useful for infinite limits. For example we write $\ln |x| = o(1/x)$ as $x \to 0$ with the precise meaning

$$\lim_{x \to 0} \frac{\ln |x|}{1/x} = 0.$$

chap9order.pdf page 3/3