MthT 430 Notes Chapter 9 Limits and Order

Limits and Order

For functions of a real variable, the derivative is defined as

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

which means that the difference

$$
\frac{f(x+\Delta x)-f(x)}{\Delta x}-f^{\prime}(x)
$$

is small if Δx is small and not 0 (for which the quotient is not obviously defined).
Multiplying the remainder by Δx, we obtain that

$$
f(x+\Delta x)-f(x)-f^{\prime}(x) \Delta x=\operatorname{small} \cdot \Delta x
$$

with the right hand side (RHS) of the equation is "much smaller than Δx " in the precise sense

$$
\lim _{\Delta x \rightarrow 0} \frac{\text { RHS }}{|\Delta x|}=0
$$

Another formal advantage is that the equation is also defined and true for $\Delta x=0$.
Definition. An expression (function) $\phi(x)$ is little o of x as $x \rightarrow 0$, written $\phi(x)=o(x)$ [as $x \rightarrow 0$], if

$$
\lim _{x \rightarrow 0} \frac{\phi(x)}{|x|}=0
$$

If we are not worried about the particular details of $\phi(x)$, we write $\phi(x)=o(x)$ [as $x \rightarrow 0]$.
With this convention, the definition of differentiability and the derivative takes the convenient form

$$
f(x+\Delta x)=f(x)+f^{\prime}(x) \cdot \Delta x+o(\Delta x) .
$$

In a similar way, if $\lim _{x \rightarrow 0} \psi(x)=0$, we write $\psi(x)=o(1)$ with the precise meaning that

$$
\lim _{x \rightarrow 0} \frac{\psi(x)}{1}=0
$$

Definition. Let $q(x)$ be nonzero for x near and not equal 0 . Then a function $\phi(x)$ is little o of $q(x)$, written $\phi(x)=o(q(x))$, if

$$
\lim _{x \rightarrow 0} \frac{\phi(x)}{|q(x)|}=0
$$

Then a function $\phi(x)$ is big O of $q(x)$, written $\phi(x)=O(q(x))$, if

$$
\frac{\phi(x)}{|q(x)|}
$$

is bounded as $x \rightarrow 0$.
N.B. We are assuming that, for x small enough and $\neq 0$, both $\phi(x)$ and $q(x)$ are defined and $q(x) \neq 0$. If $q(x)$ might possibly be 0 for some x near 0 , we also propose an $\epsilon-\delta$ definition of little $o(q)$:

Definition. A function $f=o(q)$ as $x \rightarrow 0$ means For every $\epsilon>0$, there is a $\delta>0$ such that if $0<|x|<\delta$, then $|f(x)| \leq \epsilon|q(x)|$

With this convention, continuity of a function $f(x)$ can be expressed by

$$
f(x+\Delta x)=f(x)+o(1)
$$

as $\Delta x \rightarrow 0$.
A real valued function of a real variable x is differentiable at x with derivative $f^{\prime}(x)$ if

$$
f(x+\Delta x)=f(x)+f^{\prime}(x) \Delta x+o(\Delta x)
$$

as $\Delta x \rightarrow 0$.
Local boundedness of a function can be expressed as $f(x+\Delta x)=O(1)$ as $\Delta x \rightarrow 0$.
There is a formal calculus for handling sums and products for functions which are little o or big O of one (or several) q. Verify that $O(1) \cdot o(\Delta x)=o(\Delta x)$; i.e., the product of a bounded function and a function which is $o(\Delta x)$ is $o(\Delta x)$. Similarly $o(\Delta x) \pm o(\Delta x)=o(\Delta x)$.

Proof of the Chain Rule

The Chain Rule. Let $g(z)$ be differentiable at z, and let $f(w)$ be differentiable at $w=g(z)$. Then $h(z)=f(g(z))$ is differentiable at z and

$$
h^{\prime}(z)=\frac{d}{d z} f(g(z))=f^{\prime}(g(z)) \cdot g^{\prime}(z)
$$

Proof: We show that

$$
\begin{aligned}
h(z+\Delta z) & =f(g(z+\Delta z)) \\
& =f(g(z))+f^{\prime}(g(z)) \cdot g^{\prime}(z) \cdot \Delta z+o(\Delta z) .
\end{aligned}
$$

as $\Delta z \rightarrow 0$.

Let

$$
\Delta g(z)=g(z+\Delta z)-g(z)=g^{\prime}(z) \Delta z+o(\Delta z)
$$

We are assuming that

$$
\begin{aligned}
g(z+\Delta z) & =g(z)+g^{\prime}(z) \cdot \Delta z+o(\Delta z) \\
f(g(z)+\Delta g(z)) & =f(g(z))+f^{\prime}(g(z)) \cdot \Delta g(z)+o(\Delta g(z))
\end{aligned}
$$

Since

$$
\begin{aligned}
\Delta g(z) & =g^{\prime}(z) \Delta z+o(\Delta z) \\
& =O(\Delta z), \\
o(\Delta g(z)) & =o(O(\Delta z)) \\
& =o(\Delta z),
\end{aligned}
$$

we have

$$
f(g(z+\Delta z))=f(g(z))+f^{\prime}(g(z)) \cdot g^{\prime}(z) \cdot \Delta z+o(\Delta z)
$$

Remarks

The concepts little o and big O are also useful as the argument $x \rightarrow \infty$. For example we write $x^{2}=o\left(e^{x}\right)$ as $x \rightarrow \infty$ with the precise meaning

$$
\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}=0
$$

The concepts little o and big O are also useful for infinite limits. For example we write $\ln |x|=o(1 / x)$ as $x \rightarrow 0$ with the precise meaning

$$
\lim _{x \rightarrow 0} \frac{\ln |x|}{1 / x}=0
$$

