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Logic is the beginning of wisdom not the end

Main Goal Use tools from mathematical logic to better understand
classical mathematical structures.

Exploit the interplay of semantics and syntax

Semantics = truth in mathematics structures
Syntax = formal expressions in symbolic first order logic
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Mathematical Structures

Consider the following structures with the algebraic operations of addition
+ and multiplication · and distinguished elements 0 and 1

The natural numbers N: 0,1,2,. . . ;

The integers Z: . . . ,-2,-1,0,1,2,. . . ;

The rational numbers Q, integers and quotient of integers
1,−3

5 ,
22
7 , . . . ,

The real numbers numbers R: all numbers with decimal expansions,√
2, π, e,. . .

The complex numbers C: all numbers a + bi where a, b are real and
i2 = −1.

N ⊂ Z ⊂ Q ⊂ R ⊂ C

Denote the structures (N,+, ·, 0, 1), (Z,+, ·, 0, 1), . . .
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Symbolic Logic Peano

We build up simple formulas using:

the symbols, +, · and =

parenthesis ( and )

constant symbols 0, 1

variables x , y , z , x1, x2, . . .

For example

0 + 1 = 1

(1 + 1) · (1 + 1 + 1) = (1 + 1 + 1 + 1 + 1 + 1) 2 · 3 = 6

y · y = x y2 = x

x · x + y · y = 1 x2 + y2 = 1
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Symbolic Logic II Boole

We build up more complicated formulas using Boolean connectives

∧ “and”

∨ “or”

¬ “not”

→ “implies”

x + y = z ∧ x · x + (1 + 1) · y = 0

x = y → x + z = y + z

¬(x · y = 0)→ ¬(x = 0) If xy 6= 0, then x 6= 0
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Symbolic Logic III Frege

Quantiifers

∃ “there exists”

∀ “forall”

For example

∃x x · x + x + 1 = 0

∃y y · y = x x is a square

∀x∃y y · y = x every element is a square

∀ε > 0 ∃δ > 0 ∀x (|x − a| < δ → |f (x)− b| < ε)
lim
x→a

f (x) = b
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Symbolic Logic IV Russell Whitehead

An important technical point: A sentence is a formula where all of the
variables are bound in the scope of a quantifier.
Sentences:

∀x∃y y2 = x
∃x x2 = 1 + 1

Non Sentences:
∃y y2 = x
∃x x2 + y · x + z = 0
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Theories Malcev

Sentences are declarative statements. In any particular structure they are
either true or false.

∃x∀y x · y = y
I True in N, Z,Q, R, C (take x = 1).

∀x∃y x · y = 1
I False in N, Z (take x = 2)
I True in Q, R, C.

∀x∃y y2 = x
I False in N , Z, Q (no

√
2)

I False in R (no
√
−1)

I True in C

The Theory of a structure M is the set of all sentences true in M and
denoted Th(M).
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Definable Sets A. Robinson

Formulas with free variable assert a property of the free variables.
∃y y2 = x asserts “x is a square”

in Z or Q it is true for x = 9, but false for x = 3

in R it is true of any x ≥ 0 but false for x = −3

in C it is true for every x .

Suppose φ(x1, . . . , xn) is a formula with free variables x1, . . . , xn and M is
a structure. We say that

{(a1, . . . , an) : φ holds in M of a1, . . . , an}

is definable.

We also allow parameters.

Dave Marker (UIC) From Logic to Geometry Spring 2013 9 / 1



Examples of Definable Sets in R2
Seidenberg

Some definable sets in R.

{(x , y) : x < y} is defined by

∃z (z 6= 0 ∧ x + z2 = y)

the unit circle is defined by

x2 + y2 = 1
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Our Main Goals Restated

Let M be one of our classical mathematical structures.

Try to understand Th(M), the complete theory of M.

Try to understand the definable subsets of Mn.
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Hilbert’s Program Hilbert

Understand Th(N).

(Axiomatization Problem) Can we give a simple set of axioms T true
about N such that all true statements can be derived from T by
simple logical rules?

(Decidability Problem) Is there an algorithm which when given a
sentence φ as input will decide if φ is true in N?

Good candidate for axiomatization: Peano Axioms

Basic properties of + and · like ∀x∀y x(y + 1) = xy + x

Induction axioms

[φ(0) ∧ ∀x (φ(x)→ φ(x + 1)]→ ∀x φ(x)
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Gödel’s Incompleteness Theorem Gödel

In 1931 Kurt Gödel left Hilbert’s Program in ruins.

Theorem (Gödel)

i) There are true sentences about the natural numbers that can not be
derived from the Peano axioms.
ii) The same is true for any other possible simple set of axioms
iii) There is no algorithm which when input a sentence φ will halt and tell
you if φ is true in N.

Sketch of Proof
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Z and Q? Lagrange J. Robinson Poonen

Both Th(Z) and Th(Q) are undecidable.

(Lagrange) N is definable in Z as
{x : ∃y1∃y2∃y3∃y4 x = y2

1 + y2
2 + y2

3 + y2
4 }

(J. Robinson 1959) Z is definable in Q by a ∀∃∀∃ formula

(Poonen 2010) Z is definable in Q by a ∀∃ formula.

(Park 2012) Z is definable in Q by a ∀-formula Park
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Hilbert’s Tenth Problem MRD Putnam

Theorem (Matiyasevich-J. Robinson-Davis-Putnam 1949-70)

There is no algorithm which when given as input a polynomial
f (X1, . . . ,Xn) with coefficients in Z will always halt and correctly answer
whether there is (a1, . . . , an) ∈ Zn with f (a1, . . . , an) = 0.

Solving Diophantine equations is as hard as deciding if a computer
program halts.
Open Question: Is the same true for Q.
Key Lesson: Quantifiers lead to complexity.
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Model Theory of the Real Field Tarski

Theorem (Tarski 193?)

Th(R) and Th(C) are decidable.

The ordering x < y is definable in R by ∃z 6= 0 x + z2 = y .

Theorem (Tarski)

There is an algorithm that transforms any formula φ to an equivalent to a
quantifier free formula ψ using <.

Familiar example: (Quadratic Formula) ∃x x2 + yx + z = 0 is equivalent
to y2 − 4z ≥ 0.
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Semialgebraic Sets Tarski Seidenberg

Definition

A subset of Rn is semialgerbraic if it is built up using ¬,∧,∨ from sets
{x ∈ Rn : p(x) = 0} and {x ∈ Rn : q(x) > 0}, p and q real polynomials.

Corollary

Definable = Semialgebraic

Corollary

The closure of a semialgebraic set is semi algebraic.

x ∈ cl(A)⇔ ∀ε > 0∃y ∈ A
∑

(xi − yi )
2 < ε
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Tarski’s Problem Tarski Macintyre

Open Problem Suppose we consider the structure Rexp = (R,+, ·, exp),
where exp(x) = ex . Is Th(Rexp) decidable?

A positive answer would show the decidability of hyperbolic geometry.
Even deciding equality of terms is difficult. Is

ee = 9e3 − 6e2 − 121? Probably not

Theorem (Macintrye)

Assuming Schanuel’s Conjecture there is an algorithm to decide if two
terms are equal.
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A New Paradigm Macintyre van den Dries

Decidability is the wrong problem.

Even the theories we know are decidable are provably intractable.

Our goal should be understanding definable sets.

Simple Consequence of Quantifier Elimination: In (R,+, ·, 0, 1) any
definable subset of R is a finite union of points and intervals.

Definition

We call an structure (R,+, ·, 0, 1, . . . ) o-minimal if any definable subset of
R is a finite union of points and intervals.

Remarkable Fact: O-minimality captures many of the good geometric
and topological properties of semialgebraic sets.
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Digression

July 25, 2012

U of I prof relents, will take ethics training developed by ‘unwise
rulers to annoy us’

A University of Illinois math professor who derided states ethics training as
childish, petty tyranny and Orwellian ended his four-year boycott by
agreeing to pay a fine and submit to the training, a state ethics panel
disclosed Monday.
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o-minimality van den Dries

Definition

We call an structure (R,+, ·, 0, 1, . . . ) o-minimal if any definable subset of
R is a finite union of points and intervals.

Remarkably o-minimality has remarkable consequence for definable
functions and definable subsets of Rn.

Theorem

If f : Rn → R is definable, then we can partition the domain of f into
X1 ∪ · · · ∪ Xn such that f is continuous (or Cm on each Xi ).

Dave Marker (UIC) From Logic to Geometry Spring 2013 21 / 1



Cell Decomposition Knight Pillay Steinhorn

An point in R is a 0-cell

An interval in R is a 1-cell

If A ⊆ Rn is a k-cell and f : A→ R is a continuous definable function
then

graph(f ) = {(x , y) ∈ Rn+1 : x ∈ A ∧ y = f (x)} is a k-cell.

If A ⊆ Rn+1 is a k-cell and f , g : A→ R are continuous and definable
such that f (x) < g(x) for all x ∈ A then

{(x , y) : f (x) < y < g(x), x ∈ A} is a k + 1-cell
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Cell Decomposition Knight Pillay Steinhorn

Cells in R2

Theorem (Cell Decomposition–Knight-Pillay-Steinhorn)

If X ⊆ Rn is definable, then X can be partitioned into finitely many
disjoint cells, X = C1 ∪ · · · ∪ Cm.
In particular, X has finitely many connected components.
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The New Question

Is Rexp o-minimal?

Note: Rsin is not o-minimal since

{x : sin x = 0} = {2πn : n ∈ Z}.
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Rexp Wilkie Macintyre

Theorem (Wilkie)

i) If X ⊆ Rn is definable in Rexp, then there is V ⊆ Rn+m the zero set of a
finite set of exponential polynomials such that
X = {x ∈ Rn : ∃y ∈ Rm (x , y) ∈ V }.
ii) Rexp is o-minimal.

Theorem (Macintyre-Wilkie)

Assuming Schanuel’s Conjecture Th(Rexp) is decidable.
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Ran,exp van den Dries Macintyre Marker

Ran,exp Add to Rexp all analytic functions on compact balls.

Theorem (van-den-Dries, Macintyre, Marker)

i) Ran,exp has quantifier elimination with ln.
ii) Ran,exp is o-minimal

Recently this result has been used in work of J. Pila in number theory.
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Ran,exp van den Dries Macintyre Marker

We were able to use out understanding of Th(Ran,exp) to construct useful
nonstandard models.

Theorem

If f : R→ R is definable in Rexp then f (x) is eventually less than one of

the functions ex , ee
x
, ee

ex

, . . .
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Hardy’s Problem Hardy

An LE-function is a composition of exp, ln and algebraic functions.

For functions f arising in many natural mathematical contexts, we can

usually find g ∈ LE such that lim
x→∞

f (x)

g(x)
= 1.

Question: Consider the function f that is the inverse to (ln x)(ln ln x)
[i.e., x = (ln(f (x)))(ln ln(f (x)))].

Theorem

There is no LE-function asymptotic to f .
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This is the tip of the iceberg.

There are many more o-minimal expansions of R.

Thank you!
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What Can’t a Computer Do?

The Halting Problem: Given a computer program P and an input x decide
if P halts on input x .

Theorem (Turing)

No computer program can solve the Halting Problem.
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What Can’t a Computer Do? Proof Sketch

Theorem (Turing)

No computer program can solve the Halting Problem.

Proof.

For purposes of contradiction, suppose there is such a program. Write a
new program Q that does the following:

On input P decide if P is a program and if it is decide if P halts on
input P.

If P halts on input P, go into an infinite loop.

If P does not halt on input P, halt and output 1.

Does Q halt on input Q?
Q halts on input Q ⇔ Q does not halt on input Q. Contradiction!!

Dave Marker (UIC) From Logic to Geometry Spring 2013 31 / 1



Proof of Gödel’s Theorem Turing Gödel

For each program P and each possible input x we can find a sentence φP,x

such that P halts on input x if and only if φP,x is true in N.

If there was an algorithm to decide what sentences are true in N, then
there is an algorithm to answer the halting problem.

Go Back
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